voltage measurement
Recently Published Documents


TOTAL DOCUMENTS

829
(FIVE YEARS 202)

H-INDEX

24
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 392
Author(s):  
Kamran Esmaeili ◽  
Ling Wang ◽  
Terry J. Harvey ◽  
Neil M. White ◽  
Walter Holweger

The reliability of rolling element bearings has been substantially undermined by the presence of parasitic and stray currents. Electrical discharges can occur between the raceway and the rolling elements and it has been previously shown that these discharges at relatively high current density levels can result in fluting and corrugation damages. Recent publications have shown that for a bearing operating at specific mechanical conditions (load, temperature, speed, and slip), electrical discharges at low current densities (<1 mA/mm2) may substantially reduce bearing life due to the formation of white etching cracks (WECs) in bearing components, often in junction with lubricants. To date, limited studies have been conducted to understand the electrical discharges at relatively low current densities (<1 mA/mm2), partially due to the lack of robust techniques for in-situ quantification of discharges. This study, using voltage measurement and electrostatic sensors, investigates discharges in an oil-lubricated steel-steel rolling contact on a TE74 twin-roller machine under a wide range of electrical and mechanical conditions. The results show that the discharges events between the rollers are influenced by temperature, load, and speed due to changes in the lubricant film thickness and contact area, and the sensors are effective in detecting, characterizing and quantifying the discharges. Hence, these sensors can be effectively used to study the influence of discharges on WEC formation.


Author(s):  
Xiaxi Zheng ◽  
Jen-Yao Huang ◽  
Chih-Yi Yang ◽  
Hoang-Tan-Ngoc Nguyen ◽  
Edward Yi Chang

Abstract We investigate the dependence of material and electrical properties on the growth temperature of In-situ SiNx on InAlGaN/GaN heterostructures grown by Metal-Organic Chemical Vapor Deposition. Degradation of the interface between SiNx and InAlGaN layer was observed when growth temperature is below 900 ℃ or above 1100 ℃. With the optimized SiNx growth temperature, the high-quality SiNx and low interface trap density can be realized. Thus, the double-sweep capacitance-voltage measurement showed a sharp transition from charge accumulation to depletion with low hysteresis of 0.09 V. A small threshold-voltage shift after gate bias stress (1001 s) was also characterized by I-V measurement.


2021 ◽  
Vol 20 ◽  
pp. 01-11
Author(s):  
Ngo Minh Khoa ◽  
Tran Xuan Khoa

Nowadays, more distributed generations (DGs) are connected to a radial distribution network, so conventional overcurrent relays cannot operate correctly when a fault occurs in the network. This study proposes a method to determine the fault direction in a three-phase distribution network integrated with DGs. The obtained pre-fault and fault currents are utilized to extract their phasors by the fast Fourier transform, and the phase angle difference between the positive-sequence components of the pre-fault and fault currents is used. Moreover, the method only uses the local current measurement to calculate and identify the phase angle change of the fault current without using the voltage measurement. Matlab/Simulink software is used to simulate the three-phase distribution network integrated with DGs. The faults with different resistances are assumed to occur at backward and forward fault locations. The simulation results show that the proposed method correctly determines the fault direction.


Author(s):  
En Dar Kim ◽  
Ian Korostelev

An alternative method for field MOV surge arresters diagnosing was observed, the controlled characteristic was the surge voltage of a gap arrester. The condenser that was connected in series with gap arrester was applied as voltage measurement sensor. Electrical aging of active elements (MOV), surge arrester insulation degradation and other types of electric faults causes to voltage increase at capacitor. The voltage value can be measured directly or the energy stored in capacitor can be transformed to electromagnetic signal and, then, registered remotely by specific radio transceiver. The capacitor connected in series with the surge arrester can also be used for leakage current limitation during all the life period of surge arrester. Shunted with a spark gap and presented as the low-current gap arrester with pre-sated discharge voltage glass (porcelain) pin-cap insulator can be the simplest, but reliable sensor.  Taking into consideration modern technologies the surge arrester statement continuous monitoring system can be designed. It also allows locating the place of damaged arrester that is particularly true for remote maintenance of equipped with surge protection devices electrical


Author(s):  
Fazri Z. Ibrahim ◽  
◽  
Yohanes Yohanes ◽  

The plate punching and bending combination machine is a machine that belongs to the press type with the use of a punch and a die to make holes or bends in a plate work-piece. This machine uses a hydraulic drive with a maximum working pressure of 700 Bars, which is used as a punch force to work-piece. But, it is not known the value of working pressure this frame can withstand. Therefore, machine performance becomes unknown such as punch force that can be used, work-piece thickness, whole circumference and type of material that can be machined. In this paper, the analysis is carried out using simulation and experimental methods. The simulation method is carried out using Autodesk Inventor software to determine the critical location, which is then measured by experiment. The experimental method is carried out by measuring the stress and deflection. Voltage measurement on the frame is carried out using a strain gauge sensor and measurements are carried out using a dial indicator. The application of a safety factor is 1.5 based on the yield strength of ASTM A36 as the frame material. The deflection that has occurred is 1.15 mm, the maximum working pressure obtained is 27.7 Bars. The maximum punch force is 5441 N.


2021 ◽  
Author(s):  
Erhan Sezgin ◽  
Anurag Mohapatra ◽  
Vedran S. Peric ◽  
Ozgül Salor ◽  
Thomas Hamacher

<i>The paper has been submitted to PSCC 2022 and is currently awaiting reviews.<br></i><br>This paper proposes and implements, a harmonic analysis algorithm for microgrid Power Hardware-in-the-loop (PHIL) experiments, when the point of common coupling (PCC) voltage cannot be directly wired to the local prosumer controllers due to long distances between them. Using frequency-shifting and filtering ideas, the voltage measurement is converted to magnitude and phase information. This is passed over an asynchronous communication link to another controller, where it is recovered into a waveform after delay compensation. The method allows for accurate power calculations and grid synchronization over distributed prosumer controllers. The proposed method can work at different execution rates depending on real time (RT) workload and is shown to be robust against step changes, harmonics and communication delays. The method is demonstrated with two PHIL experiments at the CoSES, TU Munich lab in grid connected and island mode.


2021 ◽  
Author(s):  
Erhan Sezgin ◽  
Anurag Mohapatra ◽  
Vedran S. Peric ◽  
Ozgül Salor ◽  
Thomas Hamacher

<i>The paper has been submitted to PSCC 2022 and is currently awaiting reviews.<br></i><br>This paper proposes and implements, a harmonic analysis algorithm for microgrid Power Hardware-in-the-loop (PHIL) experiments, when the point of common coupling (PCC) voltage cannot be directly wired to the local prosumer controllers due to long distances between them. Using frequency-shifting and filtering ideas, the voltage measurement is converted to magnitude and phase information. This is passed over an asynchronous communication link to another controller, where it is recovered into a waveform after delay compensation. The method allows for accurate power calculations and grid synchronization over distributed prosumer controllers. The proposed method can work at different execution rates depending on real time (RT) workload and is shown to be robust against step changes, harmonics and communication delays. The method is demonstrated with two PHIL experiments at the CoSES, TU Munich lab in grid connected and island mode.


2021 ◽  
Vol 12 ◽  
Author(s):  
M. Caroline Müllenbroich ◽  
Allen Kelly ◽  
Corey Acker ◽  
Gil Bub ◽  
Tobias Bruegmann ◽  
...  

Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 20181, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.


Sign in / Sign up

Export Citation Format

Share Document