scholarly journals Analysis of Stiffening Methods and Effects on Irregular Single-layer Lattice Shell Structures

2018 ◽  
Vol 50 (2) ◽  
pp. 141-156
Author(s):  
Jianshe Xu ◽  
Author(s):  
Tomomi KANEMITSU ◽  
Kenichi SUGIZAKI ◽  
Yoshiro KAI ◽  
Hisanori TANIGUCHI ◽  
Satoshi TAKI ◽  
...  
Keyword(s):  

2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Wenbao Wang ◽  
Xuanneng Gao ◽  
Lihui Le

The similarity of each scale model is verified based on the theory of similarity, deriving the similarity law of internal explosions in a single-layer spherical lattice shell structure via dimensional theory, calculated based on models with scaling coefficients of 1, 0.8, 0.6, 0.4, 0.2, and 0.1. The results show that the shock wave propagation characteristics, the distribution of the overpressure on the inner surface, the maximum dynamic response position, and the position at which the earliest explosion venting occurs are all similar to those of the original model. With the decrease of scaling coefficients, the overpressure peak value of the shock waves of each scale model, and the specific action time of the positive pressure zone, as well as specific impulse are increasingly deviated from the original model values; when the scaling coefficient is 0.1, the maximum relative error between the overpressure peak value at the measurement point and the specific action time of the positive pressure zone as well as the specific impulse and the original model value is 4.9%. Thus, it is feasible to forecast the internal explosion effect of the original structure size model by using the experiment results of the scale model with scaling coefficient λ≥0.1.


2019 ◽  
Vol 30 (13) ◽  
pp. 1913-1931 ◽  
Author(s):  
Sajjad Nikoei ◽  
Behrooz Hassani

An isogeometric approach to the analysis of laminated composite smart shell structures based on the degenerated formulation and Mindlin–Reissner assumptions using non-uniform rational B-spline basis functions is the subject of this article. To model the laminated orthotropic smart free-form shells, the equivalent single layer theory is adopted, and an accurate approach to construct the local basis systems is used. To consider the electric potential in the piezoelectric layers, a sub-layer approach is employed that assumes linear variation over the thickness of the sub-layer. To investigate the performance of the approach, static, free vibration, and static control analysis of laminated composite shells covered with piezoelectric sensor and actuator layers with different degrees of basis functions is performed. Also, the effect of mechanical loading, various input voltages, and different boundary conditions on the static response and natural frequencies have been investigated. Several numerical examples are presented to demonstrate the efficiency and accuracy of the approach and validated with the existing results from the literature.


2012 ◽  
Vol 204-208 ◽  
pp. 3048-3051
Author(s):  
Gan Tang ◽  
Wei Wei Li ◽  
Lin Feng Yin ◽  
Xiao Ming Guo

In the interest of an understanding to the imperfection stability behavior, a model of single layer spherical lattice shell was designed. The size and the pattern of initial imperfections were entirely measured. Automatic harmony loading control system and data acquisition system was used. The experiment plan, method and results have provided reference significance for the study on the stability of spatial lattice shell. The experimental results and the results of measured imperfections method were compared and analysed in detail. It is verified that measured imperfections method can accurately take into account of the effect of initial imperfections and it can be used for the supplementary checking computations of some important finished structures.


2011 ◽  
Vol 17 (36) ◽  
pp. 525-530
Author(s):  
Toru TAKEUCHI ◽  
Yuma HAYASHI ◽  
Kenichi HAYASHI ◽  
Hiroshi KOJIMA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document