scholarly journals High Temperature Tribology Behavior of 4YSZ Coatings Fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD)

2013 ◽  
Vol 46 (6) ◽  
pp. 258-263 ◽  
Author(s):  
Young-Hwan Yang ◽  
Chan-Young Park ◽  
Won-Jun Lee ◽  
Sun-Joo Kim ◽  
Sung-Min Lee ◽  
...  
Author(s):  
Matthew Northam ◽  
Lin Rossmann ◽  
Brooke Sarley ◽  
Bryan Harder ◽  
Jun-Sang Park ◽  
...  

Abstract Electron-beam physical vapor deposition (EB-PVD) is widely used for the application of thermal barrier coatings (TBCs) to turbine blades in jet engines. An emerging method, plasma-spray physical vapor deposition (PS-PVD), is a hybrid technique whereby coatings can be applied via the liquid phase to form lamellar microstructures or via the vapor to form columnar microstructures similar to that of EB-PVD. In this study, PS-PVD and conventional EB-PVD coated samples of a columnar configuration were prepared and thermally cycled to 300 and 600 cycles. These samples were subsequently characterized in-situ, under thermal load using synchrotron x-rays. From the high-resolution x-ray diffraction (XRD) patterns, the residual and in-situ strain in the TGO layer was obtained during a thermal cycle. At high temperature, the TGO layer for both deposition methods displayed a constant near zero-strain for all samples as anticipated. In the samples with 300 thermal cycles, both deposition methods showed similar strain profiles in the TGO layer. For samples with 600 cycles, PS-PVD samples showed a more significant strain relief in the TGO at room temperature compared to similarly cycled EB-PVD samples. This could explain the coating lifetime performance between the two deposition methods. The findings support ongoing efforts to tune the manufacturing of PS-PVD coatings towards the goal of meeting or exceeding the performance of currently used coatings on jet engines. This will pave the way for more affordable high temperature coating alternatives that meet durability needs.


2006 ◽  
Vol 522-523 ◽  
pp. 267-276 ◽  
Author(s):  
Kunihiko Wada ◽  
Yutaka Ishiwata ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

Several kinds of thermal barrier coatings (TBCs) deposited by electron beam physical vapor deposition (EB-PVD) were produced as a function of electron beam power in order to evaluate their strain tolerance. The deposition temperatures were changed from 1210 K to 1303 K depending on EB power. In order to evaluate strain tolerances of the EB-PVD/TBCs, a uniaxial compressive spallation test was newly proposed in this study. In addition, the microstructures of the layers were observed with SEM and Young’s moduli were measured by a nanoindentation test. The strain tolerance in as-deposited samples decreased with an increase in deposition temperature. In the sample deposited at 1210 and 1268 K, high-temperature aging treatment at 1273 K for 10 h remarkably promoted the reduction of the strain tolerance. The growth of thermally grown oxide (TGO) layer generated at the interface between topcoat and bondcoat layers was the principal reason for this strain tolerance reduction. We observed TGO-layer growth even in the as-deposited sample. Although the thickness of the initial TGO layer in the sample deposited at high temperature was thicker, the growth rate during aging treatment was smaller than those of the other specimens. This result suggests that we can improve the oxidation resistance of TBC systems by controlling the processing parameters in the EB-PVD process.


Author(s):  
Stephen Akwaboa ◽  
Patrick F. Mensah

Thermal barrier coatings (TBCs) are applied to blades, vanes, combustion chamber walls, and exhaust nozzles in gas turbines not only to limit the heat transfer through the coatings but also to protect the metallic parts from the harsh oxidizing and corrosive thermal environment. There is a growing interest in operating these hot gas path (HGP) components at optimal conditions which has resulted in a continuous increase of the turbine inlet temperatures (TITs). This has resulted in the increase of heat load on the turbine components especially in the high pressure side of the turbine necessitating the need to protect the HGP components from the heat of the exhaust gases using novel TBC such as electron beam physical vapor deposition thermal barrier coatings (EBPVD TBCs) and Air Plasma Sprayed thermal barrier coatings (APS TBCs). This study focuses on the estimation of temperature distribution in the turbine metal substrate (IN738) and coating materials (EBPVD TBC and APS TBC) subjected to isothermal conditions (1573 K) around the turbine blade. The heat conduction in the turbine blade and TBC systems necessary for the evaluation of substrate thermal loads are assessed. The steady state 2D heat diffusion in the turbine blade is modeled using ANSYS FLUENT computational fluid dynamics (CFD) commercial package. Heat transfer by radiation is fully accounted for by solving the radiative transport equation (RTE) using the discrete ordinate method. The results show that APS TBCs are better heat flux suppressors than EBPVD TBCs due to differences in the morphology of the porosity present within the TBC layer. Increased temperature drops across the TBC leads to temperature reductions at the TGO/bond coat interface which slows the rate of the thermally induced failure mechanisms such as CTE mismatch strain in the TGO layer, growth rate of TGO, and impurity diffusion within the bond coat.


2017 ◽  
Vol 193 ◽  
pp. 176-178 ◽  
Author(s):  
Taishi Yokoi ◽  
Norio Yamaguchi ◽  
Makoto Tanaka ◽  
Daisaku Yokoe ◽  
Takeharu Kato ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiyong Han ◽  
Jian Han ◽  
Zhenzhu Jing

A thermal sprayed CoCrAlY coating was prepared by air plasma spray on the surface of Ni-based superalloy GH4169; then, a nanoscale aluminum film was deposited with electron beam vacuum deposition on it. The coatings irradiated by high-current pulsed electron beam were investigated. After HCPEB treatment, the Al film was remelted into the bond coat. XRD result shows that Al and Al2O3phase were recorded in the irradiated and aluminized coatings, while Co-based oxides which originally existed in the initial samples disappeared. Microstructure observations reveal that the original coating with porosity, cavities, and inclusions was significantly changed after HCPEB treatment as compact appearance of interconnected bulged nodules. Moreover, the grains on the irradiated coating were very refined and homogeneously dispersed on the surface, which could effectively inhibit the corrosive gases and improve the coating oxidation resistance.


Sign in / Sign up

Export Citation Format

Share Document