Bathymetric Control on Paleocene Gravity Flows Around Salt Domes in the Central Graben, North Sea

Author(s):  
Ian Davison
Keyword(s):  
Author(s):  
X. Zhu ◽  
J. Langhammer ◽  
D. King ◽  
E. Madtson ◽  
H. K. Helgesen ◽  
...  

1999 ◽  
Author(s):  
Xianhuai Zhu ◽  
Jan Langhammer ◽  
Dave King ◽  
Eric Madtson ◽  
Hans Kristian Helgesen ◽  
...  

1991 ◽  
Vol 14 (1) ◽  
pp. 347-352 ◽  
Author(s):  
P. L. Cutts

AbstractThe Maureen Oilfield is located on a fault-bounded terrace in Block 16/29a of the UK Sector of the North Sea, at the intersection of the South Viking Graben and the eastern Witch Ground Graben. The field was discovered in late 1972 by the 16/29-1 well, and was confirmed by three further appraisal wells. The reservoir consists of submarine fan sandstones of the Palaeocene Maureen Formation, deposited by sediment gravity flows sourced from the East Shetland Platform. The Palaeocene sandstones, ranging from 140 to 400 ft in thickness, have good reservoir properties, with porosities ranging from 18-25% and permeabilities ranging from 30-3000 md. Hydrocarbons are trapped in a simple domal anticline, elongated NW-SE, which was formed at the Palaeocene level by Eocene/Oligocene-aged movement of underlying Permian salt. The reservoir sequence is sealed by Lista Formation claystones. Geochemical analysis suggests Upper Jurassic Kimmeridge Clay shales have been the source of Maureen hydrocarbons. Estimated recoverable reserves are 210 MMBBL. Twelve production wells have been drilled on the Maureen Field. A further seven water injection wells have been drilled to maintain reservoir pressure.


2003 ◽  
Vol 82 (1) ◽  
pp. 91-105 ◽  
Author(s):  
B.M. Schroot ◽  
R.T.E Schüttenhelm

AbstractSurface and sub-surface expressions of shallow gas in the Netherlands part of the southern North Sea are described, using standard E&P 2D and 3D seismic surveys, as well as higher frequency acoustic surveys. Surface expressions observed are pockmarks, which are geomorphologic features at the seabed indicative for venting of gas, and cemented sandstones. The subsurface expressions found comprise both phenomena indicating efficient trapping of gas in reservoir sands, such as shallow bright spots and flat spots, and phenomena, which are indications of migration or leakage to the seabed. We refer to the latter as ‘seismic anomalies indicating leakage’. These anomalies include gas chimneys or seismic chimneys. All chimneys found in the area have in common, that they belong to a seepage style, which is called ‘small and localised’. Much of this seepage is situated over salt domes, with the accompanying normal fault above the domes acting as pathways for the gas or fluids. Although there is admixture of biogenic gas, it is believed that many of the features observed relate to thermo-genic gas.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Sign in / Sign up

Export Citation Format

Share Document