scholarly journals A Prioritization Approach for Regression Test Cases Based on a Revised Genetic Algorithm

2021 ◽  
Vol 50 (3) ◽  
pp. 443-457
Author(s):  
Thamer Alrawashdeh ◽  
Fuad ElQirem ◽  
Ahmad Althunibat ◽  
Roba Alsoub

The regression testing is a software-based testing approach executed to verify that changes made to the softwaredo not affect the existing functionality of the product. On account of the constraints of time and cost, it isimpractical to re-execute all the test cases for software whenever a change occurs. In order to overcome sucha problem in the selection of regression test cases, a prioritization technique should be employed. On the basisof some predefined criterion, the prioritization techniques create an execution schedule for the test cases, sothe higher priority test cases can be performed earlier than the lower priority test cases in order to improvethe efficiency of the software testing. Many prioritization criteria for regression test cases have been proposedin software testing literature; however, most of such techniques are code-based. Keeping in view this fact, thisresearch work has proposed a prioritization approach for regression test cases generated from software specificationswhich are based on the criterion of the Average Percentage Transition Coverage (APTC) by using arevised genetic algorithm. This criterion evaluates the rate of transitions coverage by incorporating knowledgeabout the significance of transitions between activates in the form of weights. APTC has been used as a fitnessevaluation function in a genetic algorithm to measure the effectiveness of a test cases sequence. Moreover, inorder to improve the coverage percentage, the proposed approach has revised the genetic algorithm by solvingthe problem of the optimal local solution. The experimental results show that the proposed approach demonstratesa good coverage performance with less execution time as compared to the standard genetic algorithmand some other prioritization techniques.

Regression testing is an important, but expensive, process that has a powerful impact on software quality. Unfortunately all the test cases, existing and newly added, cannot be re-executed due to insufficient resources. In this scenario, prioritization of test case helps in improving the efficacy of regression testing by arranging the test cases in such a way that the most beneficial (that has the potential to detect the more number of faults) are executed first. Previous work and existing prioritization techniques, though detects faults, but there is a need of improved techniques to enhance the process of regression testing by improving the fault detection rate. The new technique, proposed in this paper, gives improved result than the existing ones. The comparison of the effectiveness of the proposed approach is done with other prioritization and non-prioritization orderings. The result of the proposed approach shows higher average percentage of faults detected (APFD) values. Also, the performance is evaluated and it is observed that the capability of the proposed method outperforms other algorithms by enhancing the fault detection rate.


2021 ◽  
Vol 27 (2) ◽  
pp. 170-189
Author(s):  
P. K. Gupta

Software is an integration of numerous programming modules  (e.g., functions, procedures, legacy system, reusable components, etc.) tested and combined to build the entire module. However, some undesired faults may occur due to a change in modules while performing validation and verification. Retesting of entire software is a costly affair in terms of money and time. Therefore, to avoid retesting of entire software, regression testing is performed. In regression testing, an earlier created test suite is used to retest the software system's modified module. Regression Testing works in three manners; minimizing test cases, selecting test cases, and prioritizing test cases. In this paper, a two-phase algorithm has been proposed that considers test case selection and test case prioritization technique for performing regression testing on several modules ranging from a smaller line of codes to huge line codes of procedural language. A textual based differencing algorithm has been implemented for test case selection. Program statements modified between two modules are used for textual differencing and utilized to identify test cases that affect modified program statements. In the next step, test case prioritization is implemented by applying the Genetic Algorithm for code/condition coverage. Genetic operators: Crossover and Mutation have been applied over the initial population (i.e. test cases), taking code/condition coverage as fitness criterion to provide a prioritized test suite. Prioritization algorithm can be applied over both original and reduced test suite depending upon the test suite's size or the need for accuracy. In the obtained results, the efficiency of the prioritization algorithms has been analyzed by the Average Percentage of Code Coverage (APCC) and Average Percentage of Code Coverage with cost (APCCc). A comparison of the proposed approach is also done with the previously proposed methods and it is observed that APCC & APCCc values achieve higher percentage values faster in the case of the prioritized test suite in contrast to the non-prioritized test suite.


2020 ◽  
Vol 17 (11) ◽  
pp. 5198-5204
Author(s):  
Seema Rani ◽  
Amandeep Kaur

Automation in software testing is significantly growing in recent situation. Most part of the system is automated with help of the software. Today every modern software developers are trying to automate the software development process as much as possible. Therefore to develop any software more skills and expertise are needed. For the software development process, testing of software is the exceedingly significant and considerable phase. Automatic test data generation had an essential function in specific area regarding software testing. Test case creation is technique of gathering the data which completes the testing standards, all criteria’s and conditions. During testing process, the software goes through frequent modifications. As a result, due to all of these modifications and repetitive retesting the cost of testing process increases. This is called regression testing. Regression testing requires more expertise, more effort, more time and more cost. Here to reduce the time and expenditure, many type of techniques are proposed. The changes in one test case will affect all the others test cases. To triumph over this problem, when the changes occurred in the software every the test case have to be retested repeatedly. And this problem leads to make the testing process time consuming with unnecessary increased cost. Here In this research paper, the work’s focal point on automatic test cases generation and prioritization with improved evolutionary genetic algorithm.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1779
Author(s):  
Wanida Khamprapai ◽  
Cheng-Fa Tsai ◽  
Paohsi Wang ◽  
Chi-En Tsai

Test case generation is an important process in software testing. However, manual generation of test cases is a time-consuming process. Automation can considerably reduce the time required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of the GA to solve the multicast routing problem in network systems. MSGA can be improved to make it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated through comparison with seven different search-based techniques, including random search. All algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The experimental results showed that EMSGA increased the efficiency of testing when compared with conventional algorithms and could detect more faults. Because of its superior performance compared with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby facilitating the development of different software packages.


Test case prioritization (TCP) is a software testing technique that finds an ideal ordering of test cases for regression testing, so that testers can obtain the maximum benefit of their test suite, even if the testing process is stop at some arbitrary point. The recent trend of software development uses OO paradigm. This paper proposed a cost-cognizant TCP approach for object-oriented software that uses path-based integration testing. Path-based integration testing will identify the possible execution path and extract these paths from the Java System Dependence Graph (JSDG) model of the source code using forward slicing technique. Afterward evolutionary algorithm (EA) was employed to prioritize test cases based on the severity detection per unit cost for each of the dependent faults. The proposed technique was known as Evolutionary Cost-Cognizant Regression Test Case Prioritization (ECRTP) and being implemented as regression testing approach for experiment.


2019 ◽  
Vol 8 (3) ◽  
pp. 4265-4271

Software testing is an essential activity in software industries for quality assurance; subsequently, it can be effectively removing defects before software deployment. Mostly good software testing strategy is to accomplish the fundamental testing objective while solving the trade-offs between effectiveness and efficiency testing issues. Adaptive and Random Partition software Testing (ARPT) approach was a combination of Adaptive Testing (AT) and Random Partition Approach (RPT) used to test software effectively. It has two variants they are ARPT-1 and ARPT-2. In ARPT-1, AT was used to select a certain number of test cases and then RPT was used to select a number of test cases before returning to AT. In ARPT-2, AT was used to select the first m test cases and then switch to RPT for the remaining tests. The computational complexity for random partitioning in ARPT was solved by cluster the test cases using a different clustering algorithm. The parameters of ARPT-1 and ARPT-2 needs to be estimated for different software, it leads to high computation overhead and time consumption. It was solved by Improvised BAT optimization algorithms and this approach is named as Optimized ARPT1 (OARPT1) and OARPT2. By using all test cases in OARPT will leads to high time consumption and computational overhead. In order to avoid this problem, OARPT1 with Support Vector Machine (OARPT1-SVM) and OARPT2- SVM are introduced in this paper. The SVM is used for selection of best test cases for OARPT-1 and OARPT-2 testing strategy. The SVM constructs hyper plane in a multi-dimensional space which is used to separate test cases which have high code and branch coverage and test cases which have low code and branch coverage. Thus, the SVM selects the best test cases for OARPT-1 and OARPT-2. The selected test cases are used in OARPT-1 and OARPT-2 to test software. In the experiment, three different software is used to prove the effectiveness of proposed OARPT1- SVM and OARPT2-SVM testing strategies in terms of time consumption, defect detection efficiency, branch coverage and code coverage.


Regression testing is performed to make conformity that any changes in software program do not disturb the existing characteristics of the software. As the software improves, the test case tends to grow in size that makes it very costly to be executed, and thus the test cases are needed to be prioritized to select the effective test cases for software testing. In this paper, a test case prioritization technique in regression testing is proposed using a novel optimization algorithm known as Taylor series-based Jaya Optimization Algorithm (Taylor-JOA), which is the integration of Taylor series in Jaya Optimization Algorithm (JOA). The optimal test cases are selected based on the fitness function, modelled depending on the constraints, namely fault detection and branch coverage. The experimentation of the proposed Taylor-JOA is performed with the consideration of the evaluation metrics, namely Average Percentage of Fault Detected (APFD) and the Average Percentage of Branch Coverage (APBC). The APFD and the APBC of the proposed Taylor-JOA is 0.995, and 0.9917, respectively, which is high as compared to the existing methods that show the effectiveness of the proposed Taylor-JOA in the task of test case prioritization


2019 ◽  
Vol 10 (2) ◽  
pp. 1-26 ◽  
Author(s):  
Munish Khanna ◽  
Naresh Chauhan ◽  
Dilip Kumar Sharma

Regression testing of evolving software is a critical constituent of the software development process. Due to resources constraints, test case prioritization is one of the strategies followed in regression testing during which a test case that satisfies predefined objectives the most, as the tester perceives, would be executed the earliest. In this study, all the experiments were performed on three web applications consisting of 65 to 100 pages with lines of code ranging from 5000 to 7000. Various state-of-the-art approaches such as, heuristic approaches, Greedy approaches, and meta heuristic approaches were applied so as to identify the prioritized test sequence which maximizes the value of average percentage of fault detection. Performance of these algorithms was compared using different parameters and it was concluded that the Artificial Bee Colony algorithm performs better than all. Two novel greedy algorithms are also proposed in the study, of which the goal is to smartly manage the state of a tie, where a tie exhibits the condition that all the test cases participating in the tie are of equal significance in achieving the objective. It has also been validated that the performance of these novel proposed algorithm(s) is better than that of traditionally followed greedy approach, most of the time.


2018 ◽  
Vol 8 (1) ◽  
pp. 83-96 ◽  
Author(s):  
Gargi Bhattacharjee ◽  
Sudipta Dash

Software testing is regarded as a pivotal approach to realize a high reliable product. To check for the correctness of results, we require appropriate test cases. UML models are largely used to depict the specifications for software development. Test cases are created independently and based on the sequence of occurrence in the diagrams; they lead to corresponding test paths in the program. In this paper, we have analyzed an activity diagram, consisting of concurrent activities, for generating test paths. The obtained test paths are therefore required to be ranked. We have demonstrated that it is conceivable to apply Genetic Algorithm procedures alongside Ant Colony Optimization technique for not only finding the most critical path but also prioritizing the other paths too for enhancing the effectiveness of software testing.


Author(s):  
RUCHIKA MALHOTRA ◽  
ABHISHEK BHARADWAJ

Software is built by human so it cannot be perfect. So in order to make sure that developed software does not do any unintended thing we have to test every software before launching it in the operational world. Software testing is the major part of software development lifecycle. Testing involves identifying the test cases which can find the errors in the program. Exhaustive testing is not a good idea to follow. It is very difficult and time consuming to perform. In this paper a technique has been proposed to do prioritize test cases according to their capability of finding errors. One which is more likely to find the errors has been assigned a higher priority and the one which is less likely to find the errors in the program has been assigned low priority. It is recommended to execute the test cases according their priority to find the errors.


Sign in / Sign up

Export Citation Format

Share Document