scholarly journals Investigation on Structural, Relative Stable, and Electronic Properties of Binary AlnLin (n = 2 – 12) Clusters through Density Functional Theory

2019 ◽  
Vol 26 (2) ◽  
pp. 154-160
Author(s):  
Lei SHI ◽  
Zhiqiang ZHOU ◽  
Tao QU ◽  
Dachun LIU ◽  
Xiumin CHEN ◽  
...  

In the present research, the structural, the relative stable, and the electronic properties of AlnLin (n = 2 – 12) clusters were investigated by density functional theory (DFT). By comparing the calculated values of Al2 and Li2 dimers with experimental ones, the reliability of the proposed method was proved. Furthermore, by considering the values of average binding energy (Eb), vertical ionization potential (VIP), vertical electron affinity (VEA), fragmentation energy (△E), second-order energy difference (△2E), HOMO-LUMO (HL) gap, and chemical hardness (η) were calculated. It was found Fragmentation energy, second-order energy difference, VIP, VEA, the chemical stability and HOMO-LUMO gap exhibit odd-even oscillatory behaviours along with cluster size and have extreme values at n = 5 revealed Al5Li5 cluster yielded excellent stability. Those can be well explained by the density of states (DOS) that Li and Al atoms with stronger covalent bonds. Therefore, Al5Li5 cluster can be used as an ideal candidate for calculating Wilson parameters of Al-Li alloys.

2012 ◽  
Vol 190-191 ◽  
pp. 405-408
Author(s):  
Cheng Gen Zhang ◽  
Shu Yuan Yu ◽  
Zong Ji Cao

Density functional theory (DFT) calculations were performed to investigate the structures of chloro silsesquioxanes Si2nO3nCl2n (n=1-5). Our study focuses on the structures, stabilities, and electronic properties of the chloro silsesquioxanes. The large HOMO–LUMO gaps, which range from 4.54 to 7.39 eV, imply optimal electronic structures for these molecules.


2012 ◽  
Vol 535-537 ◽  
pp. 1552-1555
Author(s):  
Cheng Gen Zhang ◽  
Shu Yuan Yu ◽  
Hai Mei Zhang

Density functional theory (DFT) calculations were performed to investigate the structures of tert-butyl silsesquioxanes Si2nO3n(CMe3)2n (n=1-6). Our study focuses on the structures, stabilities, and electronic properties of the tert-butyl silsesquioxanes. The large HOMO–LUMO gaps, which range from 5.68 to 6.99 eV, imply optimal electronic structures for these molecules.


2018 ◽  
Vol 32 (03) ◽  
pp. 1850024
Author(s):  
Rengi̇n Peköz ◽  
Şaki̇r Erkoç

The structural and electronic properties of neutral ternary PbxSbySez clusters (x + y + z = 2, 3) in their ground states have been explored by means of density functional theory calculations. The geometric structures and binding energies are systematically explored and for the most stable configurations of each cluster type vibrational frequencies, charges on atoms, energy difference between highest occupied and lowest unoccupied molecular orbitals, and the possible dissociations channels have been analyzed. Depending on being binary or ternary cluster and composition, the most energetic structures have singlet, doublet or triplet ground states, and trimers prefer to form isosceles, equilateral or scalene triangle structure.


2021 ◽  
Author(s):  
Mohammad Reza Poor Heravi

Abstract The adsorption of the XH3 (X = As or P) molecules were explored onto a pure and Stone-wales defected ZnONS (SW ZnONS) through density functional theory computations. As XH3 approaches the pure ZnONS their adsorption releases -3.7 to -7.6 kcal/mol, indicating a physisorption. Also, the electronic properties of the nanosheet do not change significantly. But when AsH3 approaches SW ZnONS, its adsorption releases -23.3 kcal/mol, and electronic analysis showed that the SW ZnONS HOMO/LUMO gap reduces about ~ -27.1% and the electrical conductivity increases significantly. Therefore, the SW ZnONS can generate electrical signals when the AsH3 molecule approaches, being a hopeful sensor. τ value which calculated for the desorption of AsH3 from the surface of the SW ZnONS is 9.5 s. This indicates that the SW ZnONS has the advantage of having a short τ as a sensor for AsH3 detection.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1596 ◽  
Author(s):  
Jialin Yan ◽  
Jingjing Xia ◽  
Qinfang Zhang ◽  
Binwen Zhang ◽  
Baolin Wang

Based on the genetic algorithm (GA) incorporated with density functional theory (DFT) calculations, the structural and electronic properties of neutral and charged arsenic clusters Asn (n = 2–24) are investigated. The size-dependent physical properties of neutral clusters, such as the binding energy, HOMO-LUMO gap, and second difference of cluster energies, are discussed. The supercluster structures based on the As8 unit and As2 bridge are found to be dominant for the larger cluster Asn (n ≥ 8). Furthermore, the possible geometric structures of As28, As38, and As180 are predicted based on the growth pattern.


2012 ◽  
Vol 581-582 ◽  
pp. 349-352
Author(s):  
Shu Yuan Yu ◽  
Cheng Gen Zhang ◽  
Xu Yang

Density functional theory (DFT) calculations were performed to investigate the structures of bromo silsesquioxanes Si2nO3nBr2n (n=1-5). Our study focuses on the structures, stabilities, and electronic properties of the bromo silsesquioxanes. The large HOMO–LUMO gaps, which range from 4.43 to 6.62 eV, imply optimal electronic structures for these molecules.


2012 ◽  
Vol 528 ◽  
pp. 91-94 ◽  
Author(s):  
Shu Yuan Yu ◽  
Cheng Gen Zhang ◽  
Ya Lan Wang

Density functional theory (DFT) calculations were performed to investigate the structures of trifluoromethyl silsesquioxanes Si2nO3n(CF3)2n(n=1-5). Our study focuses on the structures, stabilities, and electronic properties of the trifluoromethyl silsesquioxanes. The large HOMO–LUMO gaps, which range from 5.38 to 8.02 eV, imply optimal electronic structures for these molecules.


2018 ◽  
Vol 16 (1) ◽  
pp. 978-985 ◽  
Author(s):  
Muhammad Ramzan Saeed Ashraf Janjua

AbstractComputational chemistry is used to evaluate structures of different compounds by using principles of theoretical and quantum chemistry integrated into useful computer programs. It is used to determine energies, dipole moments and thermodynamic properties of different compounds. The present work reports the computational study of six donor-acceptor dyes. The computational method CAM-B3LYP with 6-31G(d,p) was used in this research to determine the effect of halogens on non-linear optical compounds. HOMO-LUMO energy gaps, dipole polarizabilities, first hyperpolarizabilities, and absorption spectra of six studied compounds (dye 1: 4-(2-(4-fluorophenyl)ethynyl)benzenamine; dye 2: 4-(2-(4-chlorophenyl)ethynyl)benzenamine; dye 3: 4-(2-(4-bromophenyl)ethynyl)benzenamine; dye 4: 5-(2-(4-fluorophenyl)ethynyl)benzene-1,2,3-triamine; dye 5: 5-(2-(4-chlorophenyl)ethynyl)benzene-1,2,3-triamine; dye 6: 5-(2-(4-bromophenyl)ethynyl)benzene-1,2,3-triamine) with aniline and halo phenyl segments were computed by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Results indicate that all dyes showed wavelengths of maximum absorbance in the visible region. Small HOMO-LUMO energy gaps were observed in all investigated dyes. The present calculations on these dyes (1-6) offer an understanding of the direction of charge transfer (CT) and how NLO behavior can be explained. The aniline-to-halo phenyl CT, caused by the combination of the donor amino group and the acceptor halo group, could be a reason for NLO behavior of these sorts of compounds. These compounds exhibit significant molecular second-order NLO responses, especially dyes (6) and (5), with second-order polarizability determined to be approximately 4600 a.u.


2012 ◽  
Vol 503-504 ◽  
pp. 450-454 ◽  
Author(s):  
Shu Yuan Yu ◽  
Ze Min Chen ◽  
Cheng Gen Zhang ◽  
Yu Fang Ma

Density functional theory (DFT) calculations are performed to investigate the structures of phenyl silsesquioxanes Si2nO3nPh2n (n=1-5). Our study focuses on the structures, stabilities, and electronic properties of the phenyl silsesquioxanes. The large HOMO–LUMO gaps, which range from 5.14 to 6.30 eV, imply optimal electronic structures for these molecules. The energy differences between the possible conformers of same size phenyl silsesquioxanes are small.


Sign in / Sign up

Export Citation Format

Share Document