scholarly journals Self-Healing Control Framework Against Actuator Fault of Single-Rotor Unmanned Helicopters

Author(s):  
Xin Qi ◽  
Zhong Liu ◽  
Yuqing He ◽  
Liying Yang ◽  
Yuqing He ◽  
...  
2016 ◽  
Vol 84 (1-4) ◽  
pp. 21-35 ◽  
Author(s):  
Xin Qi ◽  
Juntong Qi ◽  
Didier Theilliol ◽  
Dalei Song ◽  
Youmin Zhang ◽  
...  

2009 ◽  
pp. 597-617
Author(s):  
Gordon Fraser ◽  
Gerald Steinbauer ◽  
Jörg Weber ◽  
Franz Wotawa

An appropriate control architecture is a crucial premise for successfully achieving truly autonomous mobile robots. The architecture should allow for a robust control of the robot in complex tasks, while it should be flexible in order to operate in different environments pursuing different tasks. This chapter presents a control framework that is able to control an autonomous robot in complex realworld tasks. The key features of the framework are a hybrid control paradigm that incorporates reactive, planning and reasoning capabilities, a flexible software architecture that enables easy adaptation to new tasks and a robust task execution that makes reaction to unforeseen changes in the task and environment possible. Finally, the framework allows for detection of internal failures in the robot and includes self-healing properties. The framework was successfully deployed in the domain of robotic soccer and service robots. The chapter presents the requirements for such a framework, how the framework tackles the problems arising from the application domains, and results obtained during the deployment of the framework.


Author(s):  
Gordon Fraser

An appropriate control architecture is a crucial premise for successfully achieving truly autonomous mobile robots. The architecture should allow for a robust control of the robot in complex tasks, while it should be flexible in order to operate in different environments pursuing different tasks. This chapter presents a control framework that is able to control an autonomous robot in complex real-world tasks. The key features of the framework are a hybrid control paradigm that incorporates reactive, planning and reasoning capabilities, a flexible software architecture that enables easy adaptation to new tasks and a robust task execution that makes reaction to unforeseen changes in the task and environment possible. Finally, the framework allows for detection of internal failures in the robot and includes self-healing properties. The framework was successfully deployed in the domain of robotic soccer and service robots. The chapter presents the requirements for such a framework, how the framework tackles the problems arising from the application domains, and results obtained during the deployment of the framework.


2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


1982 ◽  
Vol 118 (4) ◽  
pp. 267-272 ◽  
Author(s):  
E. Bonifazi
Keyword(s):  

1995 ◽  
Vol 131 (4) ◽  
pp. 459-461 ◽  
Author(s):  
R. Caputo
Keyword(s):  

Author(s):  
Nabil H. Hirzallah ◽  
Petros G. Voulgaris ◽  
Naira Hovakimyan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document