scholarly journals Takagi-Sugeno Fuzzy Observer for a Switching Bioprocess: Sector Nonlinearity Approach

Author(s):  
Enrique J. ◽  
Bernardino Castillo-Toledo ◽  
Jesus Ramirez-Cordova ◽  
Eugenio C.
Author(s):  
H. Ghorbel ◽  
A. El Hajjaji ◽  
M. Souissi ◽  
M. Chaabane

In this paper, a robust fuzzy observer-based tracking controller for continuous-time nonlinear systems presented by Takagi–Sugeno (TS) models with unmeasurable premise variables, is synthesized. Using the H∞ norm and Lyapunov approach, the control design for TS fuzzy systems with both unmeasurable premises and system states is developed to guarantee tracking performance of closed loop systems. Sufficient relaxed conditions for synthesis of the fuzzy observer and the fuzzy control are driven in terms of linear matrix inequalities (LMIs) constraints. The proposed method allows simplifying the design procedure and gives the observer and controller gains in only one step. Numerical simulation on a two tank system is provided to illustrate the tracking control design procedure and to confirm the efficiency of the proposed method.


2021 ◽  
pp. 107754632110069
Author(s):  
Parvin Mahmoudabadi ◽  
Mahsan Tavakoli-Kakhki

In this article, a Takagi–Sugeno fuzzy model is applied to deal with the problem of observer-based control design for nonlinear time-delayed systems with fractional-order [Formula: see text]. By applying the Lyapunov–Krasovskii method, a fuzzy observer–based controller is established to stabilize the time-delayed fractional-order Takagi–Sugeno fuzzy model. Also, the problem of disturbance rejection for the addressed systems is studied via the state-feedback method in the form of a parallel distributed compensation approach. Furthermore, sufficient conditions for the existence of state-feedback gains and observer gains are achieved in the terms of linear matrix inequalities. Finally, two numerical examples are simulated for the validation of the presented methods.


2004 ◽  
Vol 14 (08) ◽  
pp. 2721-2733 ◽  
Author(s):  
JUAN GONZALO BARAJAS-RAMÍREZ ◽  
GUANRONG CHEN ◽  
LEANG S. SHIEH

In this paper, a methodology to design a system that robustly synchronizes a master chaotic system from a sampled driving signal is developed. The method is based on the fuzzy Takagi–Sugeno representation of chaotic systems, from which a continuous-time fuzzy observer is designed as the solution of an LMI minimization problem such that the error dynamics have H∞disturbance attenuation performance. Then, from the dual-system approach, the fuzzy observer is digitally redesigned such that the performance is maintained for the sampled master system. The effectiveness of the proposed synchronization methodology is finally illustrated via numerical simulations of the chaotic Chen's system.


2017 ◽  
Vol 5 ◽  
pp. 117-134
Author(s):  
Karim Bouassem ◽  
Jalal Soulami ◽  
Abdellatif El Assoudi ◽  
El Hassane El Yaagoubi

Sign in / Sign up

Export Citation Format

Share Document