Fuzzy observer–based disturbance rejection control for nonlinear fractional-order systems with time-varying delay

2021 ◽  
pp. 107754632110069
Author(s):  
Parvin Mahmoudabadi ◽  
Mahsan Tavakoli-Kakhki

In this article, a Takagi–Sugeno fuzzy model is applied to deal with the problem of observer-based control design for nonlinear time-delayed systems with fractional-order [Formula: see text]. By applying the Lyapunov–Krasovskii method, a fuzzy observer–based controller is established to stabilize the time-delayed fractional-order Takagi–Sugeno fuzzy model. Also, the problem of disturbance rejection for the addressed systems is studied via the state-feedback method in the form of a parallel distributed compensation approach. Furthermore, sufficient conditions for the existence of state-feedback gains and observer gains are achieved in the terms of linear matrix inequalities. Finally, two numerical examples are simulated for the validation of the presented methods.

2014 ◽  
Vol 24 (4) ◽  
pp. 785-794 ◽  
Author(s):  
Wudhichai Assawinchaichote

Abstract This paper examines the problem of designing a robust H∞ fuzzy controller with D-stability constraints for a class of nonlinear dynamic systems which is described by a Takagi-Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear matrix inequality (LMI) approach, we develop a robust H∞ fuzzy controller that guarantees (i) the L2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value, and (ii) the closed-loop poles of each local system to be within a specified stability region. Sufficient conditions for the controller are given in terms of LMIs. Finally, to show the effectiveness of the designed approach, an example is provided to illustrate the use of the proposed methodology.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaona Song ◽  
Mi Wang ◽  
Shuai Song ◽  
Jingtao Man

This paper studies fuzzy controller design problem for a class of nonlinear switched distributed parameter systems (DPSs) subject to time-varying delay. Initially, the original nonlinear DPSs are accurately described by Takagi-Sugeno fuzzy model in a local region. On the basis of parallel distributed compensation technique, mode-dependent fuzzy proportional and fuzzy proportional-spatial-derivative controllers are constructed, respectively. Subsequently, using single Lyapunov-Krasovskii functional and some matrix inequality methods, sufficient conditions that guarantee the stability and dissipativity of the closed-loop systems are presented in the form of linear matrix inequalities, which allow the control gain matrices to be easily obtained. Finally, numerical examples are provided to demonstrate the validity of the designed controllers.


2019 ◽  
Vol 26 (9-10) ◽  
pp. 643-645
Author(s):  
Xuefeng Zhang

This article shows that sufficient conditions of Theorems 1–3 and the conclusions of Lemmas 1–2 for Takasi–Sugeno fuzzy model–based fractional order systems in the study “Takagi–Sugeno fuzzy control for a wide class of fractional order chaotic systems with uncertain parameters via linear matrix inequality” do not hold as asserted by the authors. The reason analysis is discussed in detail. Counterexamples are given to validate the conclusion.


Author(s):  
R. Sakthivel ◽  
P. Vadivel ◽  
K. Mathiyalagan ◽  
A. Arunkumar

This paper is concerned with the problem of robust reliable H∞ control for a class of uncertain Takagi-Sugeno (TS) fuzzy systems with actuator failures and time-varying delay. The main objective is to design a state feedback reliable H∞ controller such that, for all admissible uncertainties as well as actuator failure cases, the resulting closed-loop system is robustly asymptotically stable with a prescribed H∞ performance level. Based on the Lyapunov-Krasovskii functional (LKF) method together with linear matrix inequality (LMI) technique, a delay dependent sufficient condition is established in terms of LMIs for the existence of robust reliable H∞ controller. When these LMIs are feasible, a robust reliable H∞ controller can be obtained. Finally, two numerical examples with simulation result are utilized to illustrate the applicability and effectiveness of our obtained result.


Author(s):  
Miloud Koumir ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

<p>This paper is concerned with the problem of model reduction design for continuous systems in Takagi-Sugeno fuzzy model. Through the defined FF H∞ gain performance, sufficient conditions are derived to design model reduction and to assure the fuzzy error system to be asymptotically stable with a FF H∞ gain performance index. The explicit conditions of fuzzy model reduction are developed by solving linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
C. Emharuethai ◽  
P. Niamsup

H∞control problem for nonlinear system with time-varying delay is considered by using a set of improved Lyapunov-Krasovskii functionals including some integral terms, and a matrix-based on quadratic convex, combined with Wirtinger's inequalities and some useful integral inequality.H∞controller is designed via memoryless state feedback control and new sufficient conditions for the existence of theH∞state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


2011 ◽  
Vol 66 (3-4) ◽  
pp. 151-160
Author(s):  
Choon Ki Ahn

In this paper, we propose a newH∞ synchronization method for fuzzy model based chaotic systems with external disturbance and time-varying delay. Based on Lyapunov-Krasovskii theory, Takagi- Sugeno (TS) fuzzy model, and linear matrix inequality (LMI) approach, the H∞ synchronization controller is presented to not only guarantee stable synchronization but also reduce the effect of external disturbance to an H∞ norm constraint. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. A simulation study is presented to demonstrate the validity of the proposed approach.


2012 ◽  
Vol 263-266 ◽  
pp. 162-166
Author(s):  
Su Huan Yi ◽  
Sheng Juan Huang

This paper focuses on the problem of H∞ filter design for continuous Takagi-Sugeno (T-S) fuzzy systems with an interval time-varying delay in the state. Based on the free weighting matrix method combined with a matrix decoupling approach, some new sufficient results are proposed in forms of linear matrix inequalities (LMIs), which can achieve much less conservative feasibility conditions. Finally, the effectiveness of the proposed method is demonstrated ba an example.


2012 ◽  
Vol 241-244 ◽  
pp. 1148-1153 ◽  
Author(s):  
Wei Hua Tian ◽  
Li Xia Li ◽  
Wei Deng ◽  
Yan Zhao

A new guaranteed cost controller design approach for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is presented. Based on the fuzzy rules and weights, the less conservative sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs). This method includes the interactions of the different subsystems into one matrix. And the design of optimal guaranteed cost controller can be formulated to a convex optimization problem. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.


Author(s):  
Navid Vafamand ◽  
Mohammad Hassan Khooban ◽  
Alireza Khayatian ◽  
Frede Blabbjerg

This paper studies a systematic linear matrix inequality (LMI) approach for controller design of nonlinear chaotic power systems. The presented method is based on a Takagi–Sugeno (TS) fuzzy model, a double-fuzzy-summation nonparallel distributed compensation (non-PDC) controller, and a double-fuzzy-summation nonquadratic Lyapunov function (NQLF). Since time derivatives of fuzzy membership functions (MFs) appear in the NQLF-based controller design conditions, local controller design criteria is considered, and sufficient conditions are formulated in terms of LMIs. Compared with the existing works in hand, the proposed LMI conditions provide less conservative results due to the special structure of the NQLF and the non-PDC controller in which two fuzzy summations are employed. To evaluate the effectiveness of the presented approach, two practical benchmark power systems, which exhibit chaotic behavior, are considered. Simulation results and hardware-in-the-loop illustrate the advantages of the proposed method compared with the recently published works.


Sign in / Sign up

Export Citation Format

Share Document