scholarly journals Essential Oil Nanoformulations as a Novel Method for Insect Pest Control in Horticulture

Author(s):  
Samar S. Ibrahim
2002 ◽  
Vol 3 (2) ◽  
pp. 64-74 ◽  
Author(s):  
Mario D. L. Moretti ◽  
Giovanni Sanna-Passino ◽  
Stefania Demontis ◽  
Emanuela Bazzoni

2014 ◽  
Vol 20 ◽  
pp. 25-32
Author(s):  
N Sapna Bai ◽  
OK Remadevi ◽  
TO Sasidharan ◽  
M Balachander ◽  
Priyadarsanan Dharmarajan

Context: Entomopathogenic fungi have been recognized as viable alternate options to chemicals in insect pest control. Unlike other potential biocontrol agents, fungi do not have to be ingested to infect their hosts but invade directly through the cuticle. Entry into the host involves both enzymic degradation of the cuticle barrier and mechanical pressure. Production of a range of cuticle degrading enzymes is an important event in the interaction of entomopathogenic fungi and host. Enzyme secretion is believed to be a key contributor for the virulence of a fungal isolate. Objectives: The potentiality of nine isolates of M. anisopliae were tested to produce to produce three important cuticle degrading enzymes, viz., chitinase, protease and lipase. Materials and Methods: Nine isolates of M. anisopliae were evaluated for chitinase, protease and lipase enzyme production by determining the enzyme index and activities. Results: Chitinase index of these isolates were ranged from 1.5 to 2.2 and chitinolytic activity from 0.525 to 1.560 U/ml. The isolates showed protease index in the range of 1.2 to 3.3 and the activity ranged from 0.020 to 0.114 U/ml. Lipase index ranged from 1.15 to 7.0 and the enzyme activity ranged from 0.153 to 0.500 U/ml. A strong relationship was observed between virulence of the isolates and cuticle degrading enzyme production as increased enzyme production was observed for virulent isolates. Conclusion: In the present study three isolates as (MIS2, MIS7 and MIS13) demonstrated cuticle degrading enzyme (CDE) that indicate higher virulence based on the bioassay conducted earlier by the authors as strongly substantiating the role of CDEs is considered the virulence of Metarhizium isolates. So, these isolates may be as ecofriendly insect-pest control agent in future. DOI: http://dx.doi.org/10.3329/jbs.v20i0.17648 J. bio-sci. 20: 25-32, 2012


2021 ◽  
Vol 70 ◽  
pp. 158-166
Author(s):  
Qiang Zhang ◽  
Wei Dou ◽  
Clauvis Nji Tizi Taning ◽  
Guy Smagghe ◽  
Jin-Jun Wang

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3171 ◽  
Author(s):  
Alejandro Lucia ◽  
Ariel Ceferino Toloza ◽  
Eduardo Guzmán ◽  
Francisco Ortega ◽  
Ramón G. Rubio

BackgroundEssential oil components (EOCs) are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control.MethodsMicellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS) experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using anex vivoimmersion test.ResultsThe poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%), 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407). These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole,α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%.DiscussionSince these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.


Sign in / Sign up

Export Citation Format

Share Document