scholarly journals Exact Traveling Wave Solutions of One-Dimensional Parabolic-Parabolic Models of Chemotaxis

Author(s):  
Maria Vladimirovna Shubina

In this chapter we consider several different parabolic-parabolic systems of chemotaxis which depend on time and one space coordinate. For these systems we obtain the exact analytical solutions in terms of traveling wave variables. Not all of these solutions are acceptable for biological interpretation, but there are solutions that require detailed analysis. We find this interesting, since chemotaxis is present in the continuous mathematical models of cancer growth and invasion (Anderson, Chaplain, Lolas, et al.) which are described by the systems of reaction–diffusion-taxis partial differential equations, and the obtaining of exact solutions to these systems seems to be a very interesting task, and a more detailed analysis is possible in a future study.


Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 30
Author(s):  
Jeerawan Suksamran ◽  
Yongwimon Lenbury ◽  
Sanoe Koonprasert

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in piglets and growing pigs. The disease rapidly spreads in swine populations, making it a serious problem causing great financial losses to the swine industry. However, past mathematical models used to describe the spread of the disease have not yielded sufficient understanding of its spatial transmission. This work has been designed to investigate a mathematical model for the spread of PRRSV considering both time and spatial dimensions as well as the observed decline in infectiousness as time progresses. Moreover, our model incorporates into the dynamics the assumption that some members of the infected population may recover from the disease and become immune. Analytical solutions are derived by using the modified extended hyperbolic tangent method with the introduction of traveling wave coordinate. We also carry out a stability and phase analysis in order to obtain a clearer understanding of how PRRSV spreads spatially through time.



2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah

We construct new exact traveling wave solutions involving free parameters of the nonlinear reaction diffusion equation by using the improved (G′/G)-expansion method. The second-order linear ordinary differential equation with constant coefficients is used in this method. The obtained solutions are presented by the hyperbolic and the trigonometric functions. The solutions become in special functional form when the parameters take particular values. It is important to reveal that our solutions are in good agreement with the existing results.





Sign in / Sign up

Export Citation Format

Share Document