scholarly journals Digit Sums and Infinite Products

Author(s):  
Samin Riasat

Consider the sequence un defined as follows: un=+1 if the sum of the base b digits of n is even, and un=−1 otherwise, where we take b=2. Recall that the Woods-Robbins infinite product involves a rational function in n and the sequence un. Although several generalizations of the Woods-Robbins product are known in the literature, no other infinite product involving a rational function in n and the sequence un was known in closed form until recently. In this chapter we introduce a systematic approach to these products, which may be generalized to other values of b. We illustrate the approach by evaluating a large class of similar infinite products.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
François Delduc ◽  
Sylvain Lacroix ◽  
Konstantinos Sfetsos ◽  
Konstantinos Siampos

Abstract In the study of integrable non-linear σ-models which are assemblies and/or deformations of principal chiral models and/or WZW models, a rational function called the twist function plays a central rôle. For a large class of such models, we show that they are one-loop renormalizable, and that the renormalization group flow equations can be written directly in terms of the twist function in a remarkably simple way. The resulting equation appears to have a universal character when the integrable model is characterized by a twist function.


2016 ◽  
Vol 66 (3) ◽  
Author(s):  
Emrah Kiliç ◽  
Helmut Prodinger

AbstractWe give a systematic approach to compute certain sums of squares of Fibonomial coefficients with finite products of generalized Fibonacci and Lucas numbers as coefficients. The technique is to rewrite everything in terms of a variable


1992 ◽  
Vol 15 (3) ◽  
pp. 499-508
Author(s):  
Mohammad H. Ahmadi

We start with finitely many1's and possibly some0's in between. Then each entry in the other rows is obtained from the Base2sum of the two numbers diagonally above it in the preceding row. We may formulate the game as follows: Defined1,jrecursively for1, a non-negative integer, andjan arbitrary integer by the rules:d0,j={1     for   j=0,k         (I)0   or   1   for   0<j<kd0,j=0   for   j<0   or   j>k              (II)di+1,j=di,j+1(mod2)   for   i≥0.      (III)Now, if we interpret the number of1's in rowias the coefficientaiof a formal power series, then we obtain a growth function,f(x)=∑i=0∞aixi. It is interesting that there are cases for which this growth function factors into an infinite product of polynomials. Furthermore, we shall show that this power series never represents a rational function.


2020 ◽  
Vol 102 (3) ◽  
pp. 387-398
Author(s):  
SHANE CHERN ◽  
DAZHAO TANG

Following recent investigations of vanishing coefficients in infinite products, we show that such instances are very rare when the infinite product is among a family of theta-quotients of modulus five. We also prove that a general family of products of theta functions of modulus five can always be effectively 5-dissected.


Author(s):  
T.K DeLillo ◽  
T.A Driscoll ◽  
A.R Elcrat ◽  
J.A Pfaltzgraff

Infinite product formulae for conformally mapping an unbounded multiply connected circle domain to an unbounded canonical radial or circular slit domain, or to domains with both radial and circular slit boundary components are derived and implemented numerically and graphically. The formulae are generated by analytic continuation with the reflection principle. Convergence of the infinite products is proved for domains with sufficiently well-separated boundary components. Some recent progress in the numerical implementation of infinite product mapping formulae is presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-14
Author(s):  
Charinthip Hengkrawit ◽  
Vichian Laohakosol ◽  
Watcharapon Pimsert

A rational divide-and-conquer relation, which is a natural generalization of the classical divide-and-conquer relation, is a recursive equation of the form f(bn)=R(f(n),f(n),…,f(b−1)n)+g(n), where b is a positive integer ≥2; R a rational function in b−1 variables and g a given function. Closed-form solutions of certain rational divide-and-conquer relations which can be used to characterize the trigonometric cotangent-tangent and the hyperbolic cotangent-tangent function solutions are derived and their global behaviors are investigated.


2013 ◽  
Vol 09 (06) ◽  
pp. 1563-1578
Author(s):  
KEENAN MONKS ◽  
SARAH PELUSE ◽  
LYNNELLE YE

In his striking 1995 paper, Borcherds [Automorphic forms on Os+2,2(ℝ) and infinite products, Invent. Math.120 (1995) 161–213] found an infinite product expansion for certain modular forms with CM divisors. In particular, this applies to the Hilbert class polynomial of discriminant -d evaluated at the modular j-function. Among a number of powerful generalizations of Borcherds' work, Zagier made an analogous statement for twisted versions of this polynomial. He proves that the exponents of these product expansions, A(n,d), are the coefficients of certain special half-integral weight modular forms. We study the congruence properties of A(n,d) modulo a prime ℓ by relating it to a modular representation of the logarithmic derivative of the Hilbert class polynomial.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Monika Pinchas ◽  
Yosef Pinhasi

Recently, the performance of the constant envelope OFDM (CE-OFDM) was analyzed in additive white Gaussian noise (AWGN) with the help of a closed-form approximated expression for the symbol error rate (SER). This expression was obtained with the assumption of having a high carrier-to-noise ratio (CNR) which, in effect, linearized the phase demodulator (the phase demodulator was implemented with an arctangent calculator) and simplified the analysis. Thus, this expression is not accurate for the lower range of CNR. As a matter of fact, it was already observed that there is a threshold point from which the simulated SER result vanishes from the theoretically obtained expression. In this paper, we present a systematic approach for calculating the SER without assuming having the high CNR case or using linearization techniques. In other words, we derive the SER for the nonlinear case. As a byproduct, we obtain a new closed-form approximated expression for the SER based on the Laplace integral method and the Edgeworth expansion. Simulation results indicate that the simulated results and those obtained from the new derived expression are very close for the entire range of bit energy-to-noise density ratio () above and below the threshold point.


2008 ◽  
Vol 45 (01) ◽  
pp. 118-134 ◽  
Author(s):  
Alan L. Lewis ◽  
Ernesto Mordecki

We show that the positive Wiener-Hopf factor of a Lévy process with positive jumps having a rational Fourier transform is a rational function itself, expressed in terms of the parameters of the jump distribution and the roots of an associated equation. Based on this, we give the closed form of the ruin probability for a Lévy process, with completely arbitrary negatively distributed jumps, and finite intensity positive jumps with a distribution characterized by a rational Fourier transform. We also obtain results for the ladder process and its Laplace exponent. A key role is played by the analytic properties of the characteristic exponent of the process and by a Baxter-Donsker-type formula for the positive factor that we derive.


Sign in / Sign up

Export Citation Format

Share Document