scholarly journals Supercapacitor Supported by Nickel, Cobalt and Conducting Polymer Based Materials: Design Techniques and Current Advancement

2021 ◽  
Author(s):  
Satish P. Mardikar ◽  
Sagar D. Balgude ◽  
Santosh J. Uke

The recent advanced electronic appliances demand special high power devices with lightweight, flexible, inexpensive, and environment friendly in nature. In addition, for many industrial and automotive applications, we need energy storage systems that can store energy in a short time and deliver an intense pulse of energy for long duration. Till date the Li-ion battery is the only choice for fulfilling all our energy storage demands. However, the high cost, limited availability and non-environmental nature of electrodes and electrolyte material of Li-ion battery limits its applicability. Hence, the world demands an alternative replacement for the Li-ion battery. In this regard, the supercapacitor is one of the most emerging and potential energy storage devices. The electrode plays an important role in supercapacitors. The nickel and cobalt based oxide, hydroxides, and their composites with conducting polymer are promising and highly appreciated electrode materials for supercapacitors. This chapter covers the recent advances in supercapacitors supported by nickel, cobalt and conducting polymer based materials and their applications predominantly described in the recent literature. Recent advances are reviewed including new methods of synthesis, nanostructuring, and self-assembly using surfactant and modifiers. This chapter also covered the applications of supercapacitors in powering the light weight, flexible and wearable electronics.

2015 ◽  
Vol 3 (4) ◽  
pp. 1364-1387 ◽  
Author(s):  
Muhammad-Sadeeq Balogun ◽  
Weitao Qiu ◽  
Wang Wang ◽  
Pingping Fang ◽  
Xihong Lu ◽  
...  

This review highlights the progress and development of metal nitrides as electrode materials for energy storage devices.


Author(s):  
Jiayu Yang ◽  
Qinghe Cao ◽  
Xiaowan Tang ◽  
Xi Xu ◽  
Tao Yu ◽  
...  

Recent advances in the development of wearable, implantable, and bio-integrated electronic devices have increased the demand for stretchable and flexible energy storage devices that can deliver high degrees of mechanical...


2018 ◽  
Vol 3 (10) ◽  
Author(s):  
Mikhail V. Avdeev ◽  
Ivan A. Bobrikov ◽  
Viktor I. Petrenko

Abstract The performance characteristics of modern electrochemical energy storage devices are largely determined by the processes occurring at charge separation interfaces, as well as by the evolution of the structure, composition and chemistry of electrodes and electrolytes. The paper reviews the principal applications of neutron scattering techniques in structural studies of electrode materials and electrochemical interfaces in the course of their operation (operando mode) with an accent to Li-ion batteries. The high penetrating power of thermal neutrons makes it possible to study complex systems that are the closest to real electrochemical cells. The recent progress and future tasks in the development of the neutron scattering methods (diffraction, reflectometry, small-angle scattering) for various types of electrodes/interfaces in Li energy storage devices are discussed.


2016 ◽  
Vol 45 (22) ◽  
pp. 6345-6404 ◽  
Author(s):  
Tyler B. Schon ◽  
Bryony T. McAllister ◽  
Peng-Fei Li ◽  
Dwight S. Seferos

We review organic electrode materials for energy storage devices and suggest directions for future work in this area.


2021 ◽  
Vol 4 (9) ◽  
pp. 9460-9469
Author(s):  
Guichao Liu ◽  
Xue-Zhi Song ◽  
Yuechi Hao ◽  
Zhifang Feng ◽  
Ruiyuan Hu ◽  
...  

2021 ◽  
Author(s):  
Muhammad Irfan ◽  
Xianhua Liu ◽  
Suraya Mushtaq ◽  
Jonnathan Cabrera ◽  
Pingping Zhang

Abstract Development of sustainable electrochemical energy storage devices faces great challenge in exploring highly efficient and low cost electrode materials. Biomass waste derived carbonaceous materials can be used as an alternative to expensive metals in supercapacitor. However, their application limited by low performance. In this study, the combination use of persimmon waste derived carbon and transition metal nitride demonstrated strong potential for supercapacitor application. Persimmon based carbonaceous gel decorated with bimetallic-nitride (N-NiCo/PC) was firstly synthesized through a green hydrothermal method. Electrochemical properties of N-NiCo/PC as electrode in 6 M KOH electrolyte solution were evaluated by using cyclic voltammetry (CV) and charge-discharge measurements. The N-NiCo/PC exhibited 895.5 F/g specific capacitance at 1 A/g current density and maintained 91.5% capacitance retention after 900 cycles. Hence, the bimetallic nitride-based-composite catalyst is a potentially suitable material for high-performance energy storage devices. In addition, this work demonstrated a promising pathway for transforming environmental waste into sustainable energy conversion materials.


Sign in / Sign up

Export Citation Format

Share Document