methods of synthesis
Recently Published Documents


TOTAL DOCUMENTS

652
(FIVE YEARS 244)

H-INDEX

33
(FIVE YEARS 9)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Yury G. Yushkov ◽  
Efim M. Oks ◽  
Andrey V. Tyunkov ◽  
Denis B. Zolotukhin

This is a review of current developments in the field of ion-plasma and beam methods of synthesis of protective and functional dielectric coatings. We give rationales for attractiveness and prospects of creating such coatings by electron-beam heating and following evaporation of dielectric targets. Forevacuum plasma electron sources, operating at elevated pressure values from units to hundreds of pascals, make it possible to exert the direct action of an electron beam on low-conductive materials. Electron-beam evaporation of aluminum oxide, boron, and silicon carbide targets is used to exemplify the particular features of electron-beam synthesis of such coatings and their parameters and characteristics.


Author(s):  
A. P. Chervonenko ◽  
D. A. Kotin ◽  
A. V. Rozhko

PURPOSE. To develop a variant of the algorithm for the automatic input of the reserve, which consists in transferring the load in case of emergency situations, to make a simulation model in the MatLab® environment corresponding to the developed generalized electrical scheme of the system.METHODS. When solving the problem, the method of digital modeling was used, which consists in the maximum approximation of the system under study to a real object, implemented by means of MatLab.RESULTS. It is proposed to study the methods of synthesis of digital models of compensation of voltage drops by the example of a study of an automatic reserve transfer system, demonstrating an approach to modeling this system. When developing models in the MatLab environment, the parameters of real technical elements and devices and their digital analogues are taken into account. The issue of creating a digital model of an electric drive system, including a model of an asynchronous motor with a short-circuited rotor, is considered. The result, after final refinement, can be used to design a real system in production conditions.CONCLUSIONS. The developed model of the automatic transfer switch system is operable, the time indicators are satisfactory for systems that do not make excessive demands on performances and time intervals. For systems that are sensitive to current inrushes during load transfer, some improvements are required, which are reduced to the implementation of a high-speed automatic switch system. The development of this system is currently at the research stage, namely, the compilation of a load transfer logic that takes into account the phase matching of electrical circuits.


2022 ◽  
pp. 77-100
Author(s):  
Meenal D. Patil ◽  
Suprimkumar D. Dhas ◽  
Annasaheb V. Moholkar

Nanotechnology has been a dynamic research area over the past few decades because it assures the resolution to the problems that hamper progress. Currently, a new era of ‘green synthesis' is an emerging multidisciplinary field in nanotechnology which employs reliable, sustainable, low-cost, non-hazardous, and eco-friendly techniques. Green synthesis is considered a vital tool to reduce the negative impacts accompanying the traditional methods of synthesis for NPs commonly employed in industry and laboratory. This chapter unveils a comprehensive overview of the recent research on available green techniques for the synthesis of various nanocomposites in order to solve future generation challenges. This chapter also focuses on the green synthesis of various nanocomposites, synthesis parameters, potential applications, merits/demerits, and future prospects.


2022 ◽  
Author(s):  
Nikita R. Romanenko ◽  
Alexey V. Kuzmin ◽  
Salavat S. Khasanov ◽  
Maxim A. Faraonov ◽  
Evgeniya I. Yudanova ◽  
...  

Coordination of tin(II) phthalocyanine to transition metal carbonyl clusters in neutral {Sn(II){Pc(2-)}}(0) or radical anion {Sn(II){Pc(•3-)}}(-) states is reported. Direct interaction of Co4(CO)12 with {Sn(II){Pc(2-)}}(0) yields crystalline complex {Co4(CO)11·Sn(II){Pc(2-))} (1)....


Author(s):  
Nataliya Demchenko ◽  
Zinaida Suvorova ◽  
Yuliia Fedchenkova ◽  
Tamara Shpychak ◽  
Oleh Shpychak ◽  
...  

The aim of this work is to develop methods of synthesis of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides and aryl-(4-R1-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines and to study their antimicrobial activity against strains of gram-positive and gram-negative bacteria as well as yeast fungi. Materials and methods. 1Н NMR spectra were recorded on Bruker 400 spectrometer operating at frequency of 400 MHz. Antimicrobial activity of the compounds synthesized was evaluated by their minimum inhibitory concentration (MIC) values. Results and discussion. The interaction of 3-arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines with substituted phenacyl bromides produced novel 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides. The latter when refluxed in 10 % solution of NaOH gave aryl-(4-R1-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines. The study of antimicrobial activity of the compounds obtained allowed to find derivatives which are active against С. albicans and S. aureus strains. Among the compounds tested 3-[(41-bromophenylamino)-methyl]-1-[2-(4-methoxyphenyl)-2-oxoethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide 5cd appeared to be more active than the reference drug Cefixime and displayed close antimicrobial activity as the antibiotic Linezolid. Conclusions. It was found out that derivatives of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides display broad spectrum of antimicrobial activity and are able to inhibit growth of both bacteria and fungi. S. aureus and C. albicans turned out to be the most sensitive strains to the compounds tested, MIC was in the range of 6.2-25.0 mg/mL. Gram-negative strains of microorganisms were less sensitive to the compounds evaluated and 5fа was the most active derivative displaying antimicrobial activity at the concentration of 50.0 mg/mL. Antimicrobial activity of triazoloazepinium bromide derivatives was similar to that one of Linezolid and Fluconazole reference drugs and more pronounced than the activity of Cefixime. Hence, the data gathered evidence the feasibility of further study of the antimicrobial properties of the most active compounds in in vivo experiments aiming at assessment of the prospects for the creation of new effective and safe antimicrobial drugs based on them


2021 ◽  
Vol 18 ◽  
Author(s):  
Neha V. Bhilare ◽  
Vinayak S. Marulkar ◽  
Pramodkumar J. Shirote ◽  
Shailaja A. Dombe ◽  
Vilas J. Pise ◽  
...  

: Mannich bases identified by Professor Carl Mannich have been the most extensively explored scaffolds for more than 100 years now. The versatile biological roles that they play have promoted their applications in many clinical conditions. The present review highlights the application of Mannich bases as cytotoxic agents, categorizing them into synthetic, semisynthetic and prodrugs classes and gives an exhaustive account of the work reported in the last two decades. The methods of synthesis of these cytotoxic agents, their anti-cancer potential in various cell lines and promising leads for future drug development have also been discussed. Structure-activity relationships along with the targets on which these cytotoxic Mannich bases act have been included as well.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3412
Author(s):  
Мaksym Pogorielov ◽  
Kateryna Smyrnova ◽  
Sergiy Kyrylenko ◽  
Oleksiy Gogotsi ◽  
Veronika Zahorodna ◽  
...  

A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of research fields due to their exceptional properties. Despite the fact that this new family of 2D materials was discovered only about ten years ago, the number of scientific publications related to MXene almost doubles every year. Thus, in 2021 alone, more than 2000 papers are expected to be published, which indicates the relevance and prospects of MXenes. The current paper critically analyzes the structural features, properties, and methods of synthesis of MXenes based on recent available research data. We demonstrate the recent trends of MXene applications in various fields, such as environmental pollution removal and water desalination, energy storage and harvesting, quantum dots, sensors, electrodes, and optical devices. We focus on the most important medical applications: photo-thermal cancer therapy, diagnostics, and antibacterial treatment. The first results on obtaining and studying the structure of high-entropy MXenes are also presented.


2021 ◽  
Author(s):  
L.A. Mikheeva ◽  
S.A. Shchelkaev ◽  
A.V. Mikheeva

Currently, the processes of complexation of various ligands, including biopolymers with metals, attract the attention of scientists from different countries not only in order to obtain new data on the methods of synthesis and properties of metal complexes, but also in connection with the search for ways to obtain new effective biologically active drugs among them. Since the life around us is oversaturated with various artificially produced drugs that have a negative effect on the human body, today, more than ever before, the question arises of using natural, environmentally friendly ingredients instead of synthetic ones, for example, such as pectin. The study of the structural parameters and physico-chemical properties of complexes of pectin substances with metals will significantly expand the scope of their practical use. Key words: metal complexes, pectin, copper pectate, complex formation.


Sign in / Sign up

Export Citation Format

Share Document