scholarly journals A classification of degree $2$ semi-stable rational maps $\protect \mathbb{P}^2\rightarrow \protect \mathbb{P}^2$ with large finite dynamical automorphism group

2019 ◽  
Vol 28 (4) ◽  
pp. 733-811
Author(s):  
Michelle Manes ◽  
Joseph H. Silverman
2000 ◽  
Vol 157 ◽  
pp. 129-147 ◽  
Author(s):  
Stefan Kebekus

In the present work we describe 3-dimensional complexSL2-varieties where the genericSL2-orbit is a surface. We apply this result to classify the minimal 3-dimensional projective varieties with Picard-number 1 where a semisimple group acts such that the generic orbits are 2-dimensional.This is an ingredient of the classification [Keb99] of the 3-dimensional relatively minimal quasihomogeneous varieties where the automorphism group is not solvable.


1981 ◽  
Vol 33 (5) ◽  
pp. 1097-1110 ◽  
Author(s):  
A. T. Huckleberry ◽  
E. L. Livorni

Throughout this paper a surface is a 2-dimensional (not necessarily compact) complex manifold. A surface X is homogeneous if a complex Lie group G of holomorphic transformations acts holomorphically and transitively on it. Concisely, X is homogeneous if it can be identified with the left coset space G/H, where if is a closed complex Lie subgroup of G. We emphasize that the assumption that G is a complex Lie group is an essential part of the definition. For example, the 2-dimensional ball B2 is certainly “homogeneous” in the sense that its automorphism group acts transitively. But it is impossible to realize B2 as a homogeneous space in the above sense. The purpose of this paper is to give a detailed classification of the homogeneous surfaces. We give explicit descriptions of all possibilities.


2003 ◽  
Vol 46 (2) ◽  
pp. 164-177 ◽  
Author(s):  
Andrew J. Dean

AbstractAn AF flow is a one-parameter automorphism group of an AF C*-algebra A such that there exists an increasing sequence of invariant finite dimensional sub-C*-algebras whose union is dense in A. In this paper, a classification of C*-dynamical systems of this form up to equivariant isomorphism is presented. Two pictures of the actions are given, one in terms of a modified Bratteli diagram/pathspace construction, and one in terms of a modified K0 functor.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950057 ◽  
Author(s):  
M. Izumi ◽  
T. Sogabe

We determine the group structure of the homotopy set whose target is the automorphism group of the Cuntz algebra [Formula: see text] for finite [Formula: see text] in terms of K-theory. We show that there is an example of a space for which the homotopy set is a noncommutative group, and hence, the classifying space of the automorphism group of the Cuntz algebra for finite [Formula: see text] is not an H-space. We also make an improvement of Dadarlat’s classification of continuous fields of the Cuntz algebras in terms of vector bundles.


2018 ◽  
Vol 39 (9) ◽  
pp. 2507-2540
Author(s):  
LAURA DE MARCO ◽  
DRAGOS GHIOCA

We present a dynamical proof of the well-known fact that the Néron–Tate canonical height (and its local counterpart) takes rational values at points of an elliptic curve over a function field $k=\mathbb{C}(X)$, where $X$ is a curve. More generally, we investigate the mechanism by which the local canonical height for a map $f:\mathbb{P}^{1}\rightarrow \mathbb{P}^{1}$ defined over a function field $k$ can take irrational values (at points in a local completion of $k$), providing examples in all degrees $\deg f\geq 2$. Building on Kiwi’s classification of non-archimedean Julia sets for quadratic maps [Puiseux series dynamics of quadratic rational maps. Israel J. Math.201 (2014), 631–700], we give a complete answer in degree 2 characterizing the existence of points with irrational local canonical heights. As an application we prove that if the heights $\widehat{h}_{f}(a),\widehat{h}_{g}(b)$ are rational and positive, for maps $f$ and $g$ of multiplicatively independent degrees and points $a,b\in \mathbb{P}^{1}(\bar{k})$, then the orbits $\{f^{n}(a)\}_{n\geq 0}$ and $\{g^{m}(b)\}_{m\geq 0}$ intersect in at most finitely many points, complementing the results of Ghioca et al [Intersections of polynomials orbits, and a dynamical Mordell–Lang conjecture. Invent. Math.171 (2) (2008), 463–483].


2008 ◽  
Vol 17 (04) ◽  
pp. 511-520 ◽  
Author(s):  
G. EHRMAN ◽  
A. GURPINAR ◽  
M. THIBAULT ◽  
D. N. YETTER

This paper summarizes substantive new results derived by a student team (the first three authors) under the direction of the fourth author at the 2005 session of the KSU REU "Brainstorming and Barnstorming". The main results are a decomposition theorem for quandles in terms of an operation of "semidisjoint union" showing that all finite quandles canonically decompose via iterated semidisjoint unions into connected subquandles, and a structure theorem for finite connected quandles with prescribed inner automorphism group. The latter theorem suggests a new approach to the classification of finite connected quandles.


Sign in / Sign up

Export Citation Format

Share Document