scholarly journals A finiteness result for the compactly supported cohomology of rigid analytic varieties, II

2007 ◽  
Vol 57 (3) ◽  
pp. 973-1017 ◽  
Author(s):  
Roland Huber
Author(s):  
Roman Flury ◽  
Reinhard Furrer

AbstractWe discuss the experiences and results of the AppStatUZH team’s participation in the comprehensive and unbiased comparison of different spatial approximations conducted in the Competition for Spatial Statistics for Large Datasets. In each of the different sub-competitions, we estimated parameters of the covariance model based on a likelihood function and predicted missing observations with simple kriging. We approximated the covariance model either with covariance tapering or a compactly supported Wendland covariance function.


2020 ◽  
Vol 23 (4) ◽  
pp. 967-979
Author(s):  
Boris Rubin ◽  
Yingzhan Wang

AbstractWe apply Erdélyi–Kober fractional integrals to the study of Radon type transforms that take functions on the Grassmannian of j-dimensional affine planes in ℝn to functions on a similar manifold of k-dimensional planes by integration over the set of all j-planes that meet a given k-plane at a right angle. We obtain explicit inversion formulas for these transforms in the class of radial functions under minimal assumptions for all admissible dimensions. The general (not necessarily radial) case, but for j + k = n − 1, n odd, was studied by S. Helgason [8] and F. Gonzalez [4, 5] on smooth compactly supported functions.


2020 ◽  
Vol 20 (2) ◽  
pp. 373-384
Author(s):  
Quoc-Hung Nguyen ◽  
Nguyen Cong Phuc

AbstractWe characterize the existence of solutions to the quasilinear Riccati-type equation\left\{\begin{aligned} \displaystyle-\operatorname{div}\mathcal{A}(x,\nabla u)% &\displaystyle=|\nabla u|^{q}+\sigma&&\displaystyle\phantom{}\text{in }\Omega,% \\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega,\end{aligned}\right.with a distributional or measure datum σ. Here {\operatorname{div}\mathcal{A}(x,\nabla u)} is a quasilinear elliptic operator modeled after the p-Laplacian ({p>1}), and Ω is a bounded domain whose boundary is sufficiently flat (in the sense of Reifenberg). For distributional data, we assume that {p>1} and {q>p}. For measure data, we assume that they are compactly supported in Ω, {p>\frac{3n-2}{2n-1}}, and q is in the sub-linear range {p-1<q<1}. We also assume more regularity conditions on {\mathcal{A}} and on {\partial\Omega\Omega} in this case.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


2012 ◽  
Vol 124 (1) ◽  
pp. 207-227 ◽  
Author(s):  
Reinel Sospedra-Alfonso ◽  
Martial Agueh

2021 ◽  
pp. 105621
Author(s):  
Arash Ghaani Farashahi ◽  
Gregory S. Chirikjian
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document