scholarly journals Quasilinear Riccati-Type Equations with Oscillatory and Singular Data

2020 ◽  
Vol 20 (2) ◽  
pp. 373-384
Author(s):  
Quoc-Hung Nguyen ◽  
Nguyen Cong Phuc

AbstractWe characterize the existence of solutions to the quasilinear Riccati-type equation\left\{\begin{aligned} \displaystyle-\operatorname{div}\mathcal{A}(x,\nabla u)% &\displaystyle=|\nabla u|^{q}+\sigma&&\displaystyle\phantom{}\text{in }\Omega,% \\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega,\end{aligned}\right.with a distributional or measure datum σ. Here {\operatorname{div}\mathcal{A}(x,\nabla u)} is a quasilinear elliptic operator modeled after the p-Laplacian ({p>1}), and Ω is a bounded domain whose boundary is sufficiently flat (in the sense of Reifenberg). For distributional data, we assume that {p>1} and {q>p}. For measure data, we assume that they are compactly supported in Ω, {p>\frac{3n-2}{2n-1}}, and q is in the sub-linear range {p-1<q<1}. We also assume more regularity conditions on {\mathcal{A}} and on {\partial\Omega\Omega} in this case.

2018 ◽  
Vol 18 (2) ◽  
pp. 393-407 ◽  
Author(s):  
Wael Abdelhedi ◽  
Hichem Chtioui ◽  
Hichem Hajaiej

AbstractWe study the following fractional Yamabe-type equation:\left\{\begin{aligned} \displaystyle A_{s}u&\displaystyle=u^{\frac{n+2s}{n-2s}% },\\ \displaystyle u&\displaystyle>0&&\displaystyle\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\text{on }\partial\Omega,\end{% aligned}\right.Here Ω is a regular bounded domain of{\mathbb{R}^{n}},{n\geq 2}, and{A_{s}},{s\in(0,1)}, represents the fractional Laplacian operator{(-\Delta)^{s}}in Ω with zero Dirichlet boundary condition. We investigate the effect of the topology of Ω on the existence of solutions. Our result can be seen as the fractional counterpart of the Bahri–Coron theorem [3].


2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Rossella Bartolo

AbstractThe aim of this paper is investigating the existence of solutions of the quasilinear elliptic Problemwhere Ω is an open bounded domain of R


2019 ◽  
Vol 21 (1) ◽  
pp. 77-93
Author(s):  
Yansheng Shen

Abstract In this article, we first study the existence of nontrivial solutions to the nonlocal elliptic problems in ℝ N {\mathbb{R}^{N}} involving fractional Laplacians and the Hardy–Sobolev–Maz’ya potential. Using variational methods, we investigate the attainability of the corresponding minimization problem, and then obtain the existence of solutions. We also consider another Choquard type equation involving the p-Laplacian and critical nonlinearities in ℝ N {\mathbb{R}^{N}} .


Sign in / Sign up

Export Citation Format

Share Document