scholarly journals The real plane Cremona group is an amalgamated product

2021 ◽  
pp. 1-23
Author(s):  
Susanna Zimmermann
1994 ◽  
Vol 22 (14) ◽  
pp. 5973-5981
Author(s):  
J. Ferrera ◽  
M.J. de la Puente

Studia Logica ◽  
1983 ◽  
Vol 42 (1) ◽  
pp. 63-80 ◽  
Author(s):  
V. B. Shehtman
Keyword(s):  

1973 ◽  
Vol 16 (1) ◽  
pp. 129-131
Author(s):  
J. C. Fisher

In this note we state and prove the followingAny equiaffinity acting on the points of an n-dimensional vector space (n ≥2) leaves invariant the members of a one parameter family of hypersurfaces defined by polynomials p(xl…,xn)=c of degree m ≤n.The theorem, restricted to the real plane, appears to have been discovered almost simultaneously by Coxeter [4] and Komissaruk [5]. The former paper presents an elegant geometric argument, showing that the result follows from the converse of Pascal's theorem. The present approach is more closely related to that of [5], in which the transformations are reduced to a canonical form.


1984 ◽  
Vol 106 (1) ◽  
pp. 149 ◽  
Author(s):  
Lou Van Den Dries
Keyword(s):  

2011 ◽  
Vol 148 (1) ◽  
pp. 153-184 ◽  
Author(s):  
Thomas Delzant ◽  
Pierre Py

AbstractGeneralizing a classical theorem of Carlson and Toledo, we prove thatanyZariski dense isometric action of a Kähler group on the real hyperbolic space of dimension at least three factors through a homomorphism onto a cocompact discrete subgroup of PSL2(ℝ). We also study actions of Kähler groups on infinite-dimensional real hyperbolic spaces, describe some exotic actions of PSL2(ℝ) on these spaces, and give an application to the study of the Cremona group.


1931 ◽  
Vol 27 (3) ◽  
pp. 306-325 ◽  
Author(s):  
I. Brahmachari

1. Considerable advantage has resulted from the postulation of unreal elements in projective geometry. In the first place these unreal elements were defined in terms of points represented by complex coordinates, and their use in purely geometrical reasoning had become well established before any serious attempt was made to justify this use, independently of algebraic considerations, by providing real representations of the unreal elements. The first successful attempt was that of von Staudt, who represented an unreal element by an elliptic involution associated with an order. In this system an ordered set of four real points is required to specify an unreal point. The system is comparatively simple to deal with in a single real plane, more complicated in a single real [3], and rapidly increases in complexity as the number of dimensions of the real field is increased.


Sign in / Sign up

Export Citation Format

Share Document