scholarly journals Effective homology for homotopy colimit and cofibrant replacement

2014 ◽  
pp. 273-286
Author(s):  
Marek Filakovský
2021 ◽  
Author(s):  
Moataz Dowaidar

Advancements in using CRISPR/Cas9 have introduced a host of new therapy possibilities for muscular dystrophies (MDs). There is a definite feeling of hope in the industry, but other barriers lay ahead, and they will define the future of MD gene editing. The ambiguity surrounding AAV transduction of satellite cells in vivo must be explained so that, if required, effort may be focused on optimizing vector targeting. Although the satellite cell correction needs are evident, it must be determined experimentally if high muscle turnover has a deleterious effect on CRISPR approaches. Another issue with muscular HDR is its low editing efficiency. Even outside the MD, exogenous, effective DNA integration would open up a slew of new possibilities.Either conventional HDR must be upgraded, or alternative techniques must be developed. The fact that both myotubes and latent satellite cells are post-mitotic means the latter are the most effective. Homology-independent targeted integration (HITI), homology-mediated end joining (HMEJ) and prime editing are three novel potentials. Duplication removal is another technique to restore full-length proteins. Duplications are the second most frequent DMD mutation, and a single sgRNA technique was used to restore dystrophin. To date, CRISPR/Cas9-mediated duplication removal has only been evaluated in DMD patient cells and must be tested in vivo. Because of their demonstrated track record in in vivo research and clinical trials, AAVs are expected to be employed in early generations of MD CRISPR therapy. Currently, AAVs may be the biggest choice, but future drugs will almost probably require a different delivery approach. It may take the shape of nanoparticles, which may carry a large range of transiently expressed payloads, while being very variable. If satellite cells can not be repaired, their capacity to escape immune reactions is crucial. To decrease the effects of muscle turnover, re-administration of nanoparticles may be utilized to treat MD throughout one's life. However, effective nanoparticle dosing for CRISPR in vivo editing has yet to be established in the muscle. Because this was not an AAV problem, the focus should be on new compositions of nanoparticles rather than improving the CRISPR/Cas9 system. The lack of published data suggests that nanoparticles' systemic muscle transport remains a considerable challenge. Due to muscle volume in the human body and the need to target muscles within the thoracic cavity, local intramuscular injections are not practical. Future research will focus primarily on developing an effective, muscle-specific nanoparticle that can be administered through circulation. The challenges ahead are tremendous, but with the appropriate focus and resources, answers will emerge, bringing therapeutic genome editing closer to the clinic than ever. While this research focused on DMD, the mentioned principles and methodology may and will undoubtedly be extended to several other MDs.


Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

Abstract We define and study the motive of the moduli stack of vector bundles of fixed rank and degree over a smooth projective curve in Voevodsky’s category of motives. We prove that this motive can be written as a homotopy colimit of motives of smooth projective Quot schemes of torsion quotients of sums of line bundles on the curve. When working with rational coefficients, we prove that the motive of the stack of bundles lies in the localizing tensor subcategory generated by the motive of the curve, using Białynicki-Birula decompositions of these Quot schemes. We conjecture a formula for the motive of this stack, inspired by the work of Atiyah and Bott on the topology of the classifying space of the gauge group, and we prove this conjecture modulo a conjecture on the intersection theory of the Quot schemes.


Author(s):  
Rocio Gonzalez-Díaz ◽  
Belén Medrano ◽  
Javier Sánchez-Peláez ◽  
Pedro Real

2021 ◽  
Vol 104 ◽  
pp. 724-753
Author(s):  
Andrea Guidolin ◽  
Jose Divasón ◽  
Ana Romero ◽  
Francesco Vaccarino
Keyword(s):  

2012 ◽  
Vol 23 (5-6) ◽  
pp. 233-249 ◽  
Author(s):  
Daniel Díaz-Pernil ◽  
Hepzibah A. Christinal ◽  
Miguel A. Gutiérrez-Naranjo ◽  
Pedro Real

2001 ◽  
Vol 64 (2) ◽  
pp. 472-488 ◽  
Author(s):  
D. NOTBOHM

For a prime p, a homology decomposition of the classifying space BG of a finite group G consist of a functor F : D → spaces from a small category into the category of spaces and a map hocolim F → BG from the homotopy colimit to BG that induces an isomorphism in mod-p homology. Associated to a modular representation G → Gl(n; [ ]p), a family of subgroups is constructed that is closed under conjugation, which gives rise to three different homology decompositions, the so-called subgroup, centralizer and normalizer decompositions. For an action of G on an [ ]p-vector space V, this collection consists of all subgroups of G with nontrivial p-Sylow subgroup which fix nontrivial (proper) subspaces of V pointwise. These decomposition formulas connect the modular representation theory of G with the homotopy theory of BG.


2016 ◽  
Vol 83 ◽  
pp. 59-66 ◽  
Author(s):  
Raúl Reina-Molina ◽  
Daniel Díaz-Pernil ◽  
Pedro Real ◽  
Ainhoa Berciano

2004 ◽  
Vol 01 (04) ◽  
pp. 595-610 ◽  
Author(s):  
BROŇA BREJOVÁ ◽  
DANIEL G. BROWN ◽  
TOMÁŠ VINAŘ

Optimal spaced seeds were developed as a method to increase sensitivity of local alignment programs similar to BLASTN. Such seeds have been used before in the program PatternHunter, and have given improved sensitivity and running time relative to BLASTN in genome–genome comparison. We study the problem of computing optimal spaced seeds for detecting homologous coding regions in unannotated genomic sequences. By using well-chosen seeds, we are able to improve the sensitivity of coding sequence alignment over that of TBLASTX, while keeping runtime comparable to BLASTN. We identify good seeds by first giving effective hidden Markov models of conservation in alignments of homologous coding regions. We give an efficient algorithm to compute the optimal spaced seed when conservation patterns are generated by these models. Our results offer the hope of improved gene finding due to fewer missed exons in DNA/DNA comparison, and more effective homology search in general, and may have applications outside of bioinformatics.


Sign in / Sign up

Export Citation Format

Share Document