Carbon and nitrogen storage and distribution of four forest ecosystems in Liupan Mountains, northwestern China

2015 ◽  
Vol 35 (15) ◽  
Author(s):  
杨丽丽 YANG Lili ◽  
王彦辉 WANG Yanhui ◽  
文仕知 WEN Shizhi ◽  
刘延惠 LIU Yanhui ◽  
杜敏 DU Min ◽  
...  
2010 ◽  
Vol 18 (3) ◽  
pp. 576-580 ◽  
Author(s):  
Hua WANG ◽  
Yu HUANG ◽  
Si-Long WANG ◽  
Dong-Sheng ZOU

2017 ◽  
Vol 37 (4) ◽  
Author(s):  
刘顺 LIU Shun ◽  
罗达 LUO Da ◽  
刘千里 LIU Qianli ◽  
张利 ZHANG Li ◽  
杨洪国 YANG Hongguo ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianqiang Li ◽  
Qibo Chen ◽  
Zhuang Li ◽  
Bangxiao Peng ◽  
Jianlong Zhang ◽  
...  

AbstractThe carbon (C) pool in forest ecosystems plays a long-term and sustained role in mitigating the impacts of global warming, and the sequestration of C is closely linked to the nitrogen (N) cycle. Accurate estimates C and N storage (SC, SN) of forest can improve our understanding of C and N cycles and help develop sustainable forest management policies in the content of climate change. In this study, the SC and SN of various forest ecosystems dominated respectively by Castanopsis carlesii and Lithocarpus mairei (EB), Pinus yunnanensis (PY), Pinus armandii (PA), Keteleeria evelyniana (KE), and Quercus semecarpifolia (QS) in the central Yunnan Plateau of China, were estimated on the basis of a field inventory to determine the distribution and altitudinal patterns of SC and SN among various forest ecosystems. The results showed that (1) the forest SC ranged from 179.58 ± 20.57 t hm−1 in QS to 365.89 ± 35.03 t hm−1 in EB. Soil, living biomass and litter contributed an average of 64.73%, 31.72% and 2.86% to forest SC, respectively; (2) the forest SN ranged from 4.47 ± 0.94 t ha−1 in PY to 8.91 ± 1.83 t ha−1 in PA. Soil, plants and litter contributed an average of 86.88%, 10.27% and 2.85% to forest SN, respectively; (3) the forest SC and SN decreased apparently with increasing altitude. The result demonstrates that changes in forest types can strongly affect the forest SC and SN. This study provides baseline information for forestland managers regarding forest resource utilization and C management.


2009 ◽  
Vol 15 (3) ◽  
pp. 535-548 ◽  
Author(s):  
E. A. H. SMITHWICK ◽  
M. G. RYAN ◽  
D. M. KASHIAN ◽  
W. H. ROMME ◽  
D. B. TINKER ◽  
...  

2008 ◽  
Vol 72 (4) ◽  
pp. 546-556 ◽  
Author(s):  
E. Medina-Roldán ◽  
J.T. Arredondo ◽  
E. Huber-Sannwald ◽  
L. Chapa-Vargas ◽  
V. Olalde-Portugal

2015 ◽  
Vol 12 (22) ◽  
pp. 6751-6760 ◽  
Author(s):  
Z. H. Zhou ◽  
C. K. Wang

Abstract. Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic) and nitrogen (Nmic) and related parameters from 207 independent studies published up to November 2014 across China's forest ecosystems. Our objectives were to (1) examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates) by climate zones and management regimes for these forests; and (2) identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg−1), Nmic (60.1 mg kg−1, Cmic : Nmic ratio (8.25), Cmic / Csoil rate (1.92 %), and Nmic / Nsoil rate (3.43 %) across China's forests. The natural forests had significantly greater Cmic (514.1 mg kg−1 vs. 281.8 mg kg−1) and Nmic (82.6 mg kg−1 vs. 39.0 mg kg−1) than the planted forests, but had less Cmic : Nmic ratio (7.3 vs. 9.2) and Cmic / Csoil rate (1.7 % vs. 2.1 %). Soil resources and climate together explained 24.4–40.7 % of these variations. The Cmic : Nmic ratio declined slightly with Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plasticity of microbial carbon-nitrogen stoichiometry. The Cmic / Csoil rate decreased with Csoil : Nsoil ratio, whereas the Nmic / Nsoil rate increased with Csoil : Nsoil ratio; the former was influenced more by soil resources than by climate, whereas the latter was influenced more by climate. These results suggest that soil microbial assimilation of carbon and nitrogen are jointly driven by soil resources and climate, but may be regulated by different mechanisms.


Ecosystems ◽  
2011 ◽  
Vol 14 (8) ◽  
pp. 1217-1231 ◽  
Author(s):  
Jay B. Norton ◽  
Laura J. Jungst ◽  
Urszula Norton ◽  
Hayley R. Olsen ◽  
Kenneth W. Tate ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document