Global Dynamics of an SIRSI Epidemic Model with Discrete Delay and General Incidence Rate

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Amine Bernoussi ◽  
Khalid Hattaf
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


2021 ◽  
Vol 136 (1) ◽  
Author(s):  
Adnane Boukhouima ◽  
El Mehdi Lotfi ◽  
Marouane Mahrouf ◽  
Silvério Rosa ◽  
Delfim F. M. Torres ◽  
...  

Author(s):  
Parvaiz Ahmad Naik ◽  
Muhammad Bilal Ghori ◽  
Jian Zu ◽  
Zohre Eskandari ◽  
Mehraj-ud-din Naik

The present paper studies a fractional-order SEIR epidemic model for the transmission dynamics of infectious diseases such as HIV and HBV that spreads in the host population. The total host population is considered bounded, and Holling type-II saturation incidence rate is involved as the infection term. Using the proposed SEIR epidemic model, the threshold quantity, namely basic reproduction number R0, is obtained that determines the status of the disease, whether it dies out or persists in the whole population. The model’s analysis shows that two equilibria exist, namely, disease-free equilibrium (DFE) and endemic equilibrium (EE). The global stability of the equilibria is determined using a Lyapunov functional approach. The disease status can be verified based on obtained threshold quantity R0. If R0 < 1, then DFE is globally stable, leading to eradicating the population’s disease. If R0 > 1, a unique EE exists, and that is globally stable under certain conditions in the feasible region. The Caputo type fractional derivative is taken as the fractional operator. The bifurcation and sensitivity analyses are also performed for the proposed model that determines the relative importance of the parameters into disease transmission. The numerical solution of the model is obtained by the generalized Adams- Bashforth-Moulton method. Finally, numerical simulations are performed to illustrate and verify the analytical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Abdoul Samba Ndongo ◽  
Hamad Talibi Alaoui

In this work an HIV-1 infection model with nonlinear incidence rate and distributed intracellular delays and with humoral immunity is investigated. The disease transmission function is assumed to be governed by general incidence rate f(T,V)V. The intracellular delays describe the time between viral entry into a target cell and the production of new virus particles and the time between infection of a cell and the emission of viral particle. Lyapunov functionals are constructed and LaSalle invariant principle for delay differential equation is used to establish the global asymptotic stability of the infection-free equilibrium, infected equilibrium without B cells response, and infected equilibrium with B cells response. The results obtained show that the global dynamics of the system depend on both the properties of the general incidence function and the value of certain threshold parameters R0 and R1 which depends on the delays.


Sign in / Sign up

Export Citation Format

Share Document