Global Dynamics for a Vector-Borne Disease Model with Class-Age-Dependent Vaccination, Latency and General Incidence Rate

2020 ◽  
Vol 19 (2) ◽  
Author(s):  
Shengfu Wang ◽  
Lin-Fei Nie
2020 ◽  
Vol 30 (06) ◽  
pp. 2050083
Author(s):  
Sk Shahid Nadim ◽  
Indrajit Ghosh ◽  
Joydev Chattopadhyay

In this paper, we study the dynamics of a vector-borne disease model with two transmission paths: direct transmission through contact and indirect transmission through vector. The direct transmission is considered to be a nonmonotone incidence function to describe the psychological effect of some severe diseases among the population when the number of infected hosts is large and/or the disease possesses high case fatality rate. The system has a disease-free equilibrium which is locally asymptotically stable when the basic reproduction number ([Formula: see text]) is less than unity and may have up to four endemic equilibria. Analytical expression representing the epidemic growth rate is obtained for the system. Sensitivity of the two transmission pathways were compared with respect to the epidemic growth rate. We numerically find that the direct transmission coefficient is more sensitive than the indirect transmission coefficient with respect to [Formula: see text] and the epidemic growth rate. Local stability of endemic equilibrium is studied. Further, the global asymptotic stability of the endemic equilibrium is proved using Li and Muldowney geometric approach. The explicit condition for which the system undergoes backward bifurcation is obtained. The basic model also exhibits the hysteresis phenomenon which implies diseases will persist even when [Formula: see text] although the system undergoes a forward bifurcation and this phenomenon is rarely observed in disease models. Consequently, our analysis suggests that the diseases with multiple transmission routes exhibit bistable dynamics. However, efficient application of temporary control in bistable regions will curb the disease to lower endemicity. Additionally, numerical simulations reveal that the equilibrium level of infected hosts decreases as psychological effect increases.


2018 ◽  
Author(s):  
Sk Shahid Nadim ◽  
Indrajit Ghosh ◽  
Joydev Chattopadhyay

In this paper, we study the dynamics of a vector-borne disease model with two transmission paths: direct transmission through contact and indirect transmission through vector. The direct transmission is considered to be a non-monotone incidence function to describe the psychological effect of some severe diseases among the population when the number of infected hosts is large and/or the disease possesses high case fatality rate. The system has a disease-free equilibrium which is locally asymptomatically stable when the basic reproduction number (R_0) is less than unity and may have up to four endemic equilibria. Analytical expression representing the epidemic growth rate is obtained for the system. Sensitivity of the two transmission pathways were compared with respect to the epidemic growth rate. We numerically find that the direct transmission coefficient is more sensitive than the indirect transmission coefficient with respect to R_0 and the epidemic growth rate. Local stability of endemic equilibria is studied. Further, the global asymptotic stability of the endemic equilibrium is proved using Li and Muldowney geometric approach. The explicit condition for which the system undergoes backward bifurcation is obtained. The basic model also exhibits the hysteresis phenomenon which implies diseases will persist even when R_0<1 although the system undergoes a forward bifurcation and this phenomenon is rarely observed in disease models. Consequently, our analysis suggests that the diseases with multiple transmission routes exhibit bi-stable dynamics. However, efficient application of temporary control in bi-stable regions will curb the disease to lower endemicity. In addition, increase in transmission heterogeneity will increase the chance of disease eradication.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e108172 ◽  
Author(s):  
Sansao A. Pedro ◽  
Shirley Abelman ◽  
Frank T. Ndjomatchoua ◽  
Rosemary Sang ◽  
Henri E. Z. Tonnang

2016 ◽  
Vol 09 (03) ◽  
pp. 1382-1395
Author(s):  
Muhammad Ozair ◽  
Qamar Din ◽  
Takasar Hussain ◽  
Aziz Ullah Awan

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zhixing Hu ◽  
Shanshan Yin ◽  
Hui Wang

This paper established a delayed vector-borne disease model with saturated infection rate and cure rate. First of all, according to the basic reproductive number R0, we determined the disease-free equilibrium E0 and the endemic equilibrium E1. Through the analysis of the characteristic equation, we consider the stability of two equilibriums. Furthermore, the effect on the stability of the endemic equilibrium E1 by delay was studied, the existence of Hopf bifurcations of this system in E1 was analyzed, and the length of delay to preserve stability was estimated. The direction and stability of the Hopf bifurcation were also been determined. Finally, we performed some numerical simulation to illustrate our main results.


2019 ◽  
Vol 5 (2) ◽  
pp. 359-381
Author(s):  
Suxia Zhang ◽  
Hongsen Dong ◽  
Xiaxia Xu ◽  
Xiaoqin Shen

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Stanislas Ouaro ◽  
Ali Traoré

We study a vector-borne disease with age of vaccination. A nonlinear incidence rate including mass action and saturating incidence as special cases is considered. The global dynamics of the equilibria are investigated and we show that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable; that is, the disease dies out, while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable, which means that the disease persists in the population. Using the basic reproduction number, we derive a vaccination coverage rate that is required for disease control and elimination.


Sign in / Sign up

Export Citation Format

Share Document