scholarly journals Growth, optical, thermal and electrical properties of nonlinear optical -glycine single crystal

2015 ◽  
Vol 10 (13) ◽  
pp. 421-429 ◽  
Author(s):  
Nithya N ◽  
Mahalakshmi R ◽  
Sagadevan S
2016 ◽  
Vol 10 (4) ◽  
pp. 395-400 ◽  
Author(s):  
Deepali Kelkar ◽  
◽  
Ashish Chourasia ◽  
◽  

Poly(3,4-ethylenedioxythiophene) (PEDOT) was chemically synthesized, undoped and then re-doped using FeCl3 as well as camphorsulfonic acid (CSA). FT-IR results confirm the nature of the synthesized and doped samples. XRD analysis indicates crystal structure modification after doping and was also used to calculate crystallinity of samples. Crystallinity increases after FeCl3 doping, whereas it reduces due to CSA doping. TGA-DTA results show reduction in Tg value for FeCl3 doped sample while it increases for CSA doped samples compared to that of undoped PEDOT. Reduction in Tg indicates plasticizing effect of FeCl3 whereas increase in Tg show anti-plasticizing effect of CSA in PEDOT. Conductivity value () increases by two orders of magnitude after doping. Log vs. 1/T graph show metallic nature of undoped PEDOT above 308 K, however both doped samples show semiconducting nature from 301 to 383 K.


2019 ◽  
Author(s):  
javier enriquez ◽  
Ignacio Chi-Duran ◽  
Carolina Manquian ◽  
Felipe Herrera ◽  
Ruben Fritz ◽  
...  

Non-centrosymmetric single-crystal metal-organic frameworks (MOF) are promising candidates for phase-matched nonlinear optical communication, but typical hydrothermal synthesis produces small crystals with relatively low transmittance and poor phase matching. We study the effect of the metal-to-ligand molar ratio and reaction pH on the hydro-thermal synthesis of the non-centrosymmetric Zn(3-ptz)<sub>2</sub> and Zn(OH)(3-ptz) MOFs with <i>in-situ </i>ligand formation. In acidic environments, we find that decreasing the amount of ligand below the stoichiometric molar ratio 1:2 also produces highly transparent single-crystal octahedrons of <b>Zn(3-ptz)<sub>2</sub></b>. In alkaline environments, we obtain long rod-like <b>Zn(OH)(3-ptz) </b>crystals whose length exceeds previous reports by up to four orders of magnitude. Potential applications of these results in the development of MOF-based nonlinear optical devices are discussed.


Sign in / Sign up

Export Citation Format

Share Document