thermal synthesis
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 64)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Julian F. Baumgärtner ◽  
Frank Krumeich ◽  
Michael Wörle ◽  
Kostiantyn V. Kravchyk ◽  
Maksym V. Kovalenko

AbstractTowards enhancement of the energy density of Li-ion batteries, BiF3 has recently attracted considerable attention as a compelling conversion-type cathode material due to its high theoretical capacity of 302 mAh g−1, average discharge voltage of ca. 3.0 V vs. Li+/Li, the low theoretical volume change of ca. 1.7% upon lithiation, and an intrinsically high oxidative stability. Here we report a facile and scalable synthesis of phase-pure and highly crystalline orthorhombic BiF3via thermal decomposition of bismuth(III) trifluoroacetate at T = 300 °C under inert atmosphere. The electrochemical measurements of BiF3 in both carbonate (LiPF6-EC/DMC)- and ionic liquid-based (LiFSI-Pyr1,4TFSI) Li-ion electrolytes demonstrated that ionic liquids improve the cyclic stability of BiF3. In particular, BiF3 in 4.3 M LiFSI-Pyr1,4TFSI shows a high initial capacity of 208 mA g−1 and capacity retention of ca. 50% over at least 80 cycles at a current density of 30 mA g−1.


Author(s):  
Mohammad Javad Hakimi-Tehrani ◽  
S. A. Hassanzadeh-Tabrizi ◽  
Narges Koupaei ◽  
Ali Saffar ◽  
Mahdi Rafiei

Abstract Semiconductors as photocatalysts are ideal materials for wastewater remediation. A nanocomposite of g-C3N4 and ZnO was produced using a two-step in-situ synthesis technique to achieve a better photocatalyst. The samples were assessed via UV-vis diffuse reflection spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, Fourier transform infrared analysis, and X-ray diffraction. The photodegradation of methylene blue as an organic dye model was assessed to examine the photocatalytic properties of the synthesized samples. The antibacterial characteristics of synthesized samples were also investigated. The findings revealed that the photodegradation efficiency of the binary g-C3N4/ZnO systems was greater than that of pristine g-C3N4. Under irradiation, the photodegradation yield of g-C3N4/ZnO with a 15 wt.% of ZnO was up to 3.5 times better than that of pristine g-C3N4. The feature of enhanced separation of photoinduced holes and electrons resulting from heterojunction formation between g-C3N4 and ZnO surfaces might be attributed to this photocatalytic activity enhancement. The synthesized binary nanocomposites showed good antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zheng Cao ◽  
Li Li ◽  
Linjun Yang ◽  
LiLi Yao ◽  
Haiyan Wang ◽  
...  

Magnesium (Mg) alloys have a wide range of biomaterial applications, but their lack of biocompatibility and osteoinduction property impedes osteointegration. In order to enhance the bioactivity of Mg alloy, a composite coating of fluorinated hydroxyapatite (FHA) and tantalum (Ta) was first developed on the surface of the alloy through thermal synthesis and magnetron sputtering technologies in this study. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) mapping, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle measurement (WCA), which characterized the surface alternation and confirmed the deposition of the target FHA/Ta coating. The results of cell morphology showed that the MC3T3-E1 cells on the surface of Mg/FHA/Ta samples had the largest spreading area and lamellipodia. Moreover, the FHA coating endowed the surface with superior cell viability and osteogenic properties, while Ta coating played a more important role in osteogenic differentiation. Therefore, the combination of FHA and Ta coatings could synergistically promote biological functions, thus providing a novel strategy for implant design.


2021 ◽  
Vol 228 ◽  
pp. 331-339
Author(s):  
Kaiwen Shi ◽  
Xiaode Guo ◽  
Ling Chen ◽  
Shanshan Huang ◽  
Linlin Zhao ◽  
...  

2021 ◽  
Author(s):  
Mohsen Nasirian

Heterogeneous semiconductor photocatalysts have been shown to be efficient for the degradation of refractory organics into simple compounds. Among all photocatalysts, TiO2 is the most used one. Two issues that arise with the use of unmodified TiO2 as a photocatalyst are the unwanted fast recombination of electron/hole pairs and the lower effectiveness in the presence of visible light irradiation. Doping a transition metal or a non-metal into TiO2 and its combination with another photocatalyst have been used to enhance its photoactivity. This study is to develop a new photocatalyst by the combination of TiO2 with another semiconductor oxide (Fe2O3) and its doping with transition metal such as Ag. Combined photocatalysts of Fe2O3 /TiO2 (with different mass ratio of Fe:TiO2) is synthesized and then silver ion is doped to combine photocatalysts (with different mass ratio of Ag:TiO2) to produce a new composite photocatalyst of Ag/TiO2/Fe2O3. A new method of UV-assisted thermal synthesis is also employed to prepare the new composite photocatalyst. Methyl orange (MO) and Congo red (CR), as model pollutants, are used to test the developed photocatalyst. In addition, nitrogen-doped titanium dioxide photocatalyst (N-TiO2) with heterojunction structures is synthesized by three different approaches including new UV-assisted thermal synthesis, annealing, and microwave techniques. The novel UV-assisted thermal synthesis has produced encouraging results as a preparation method to prepare N-TiO2 at lower temperature and atmospheric pressure as well as a lower cost. Design of Experiment (DOE) along with response surface methodology (RSM) is used to optimize the photocatalytic activity of N-TiO2 as well as the affecting parameters (wavelength, light intensity, pH, and initial TOC) for decomposition of organics. The structure of all synthesized composite photocatalysts are investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) is employed to evaluate surface characteristics and elemental analysis of synthesized photocatalysts. Specific surface area of photocatalysts is measured based on Brunauer, Emmett and Teller (BET) technique. Results show that bare TiO2 has the lowest photocatalytic activity in degradation of organics. When silver is doped to TiO2, the degradation of MO is slightly enhanced at specific mass ratio. The presence of Fe2O3 in the new composite causes a red shift and enhances the potential to absorb higher range of visible light. Results from XRD confirmed that Fe3+ substitutes with Ti4+ in the crystal lattice of TiO2 and crystal defect occurs. The degradation of MO in presence of Ag/TiO2/Fe2O3 (Ag/TiO2=0.005 w:w and Fe:TiO2= 0.01 w:w) reached to 95.6% under sunlight in three hours with a red shift towards visible light. It is observed that there is an optimum specific surface area of photocatalysts by doping and combining photocatalysts.


2021 ◽  
Author(s):  
Mohsen Nasirian

Heterogeneous semiconductor photocatalysts have been shown to be efficient for the degradation of refractory organics into simple compounds. Among all photocatalysts, TiO2 is the most used one. Two issues that arise with the use of unmodified TiO2 as a photocatalyst are the unwanted fast recombination of electron/hole pairs and the lower effectiveness in the presence of visible light irradiation. Doping a transition metal or a non-metal into TiO2 and its combination with another photocatalyst have been used to enhance its photoactivity. This study is to develop a new photocatalyst by the combination of TiO2 with another semiconductor oxide (Fe2O3) and its doping with transition metal such as Ag. Combined photocatalysts of Fe2O3 /TiO2 (with different mass ratio of Fe:TiO2) is synthesized and then silver ion is doped to combine photocatalysts (with different mass ratio of Ag:TiO2) to produce a new composite photocatalyst of Ag/TiO2/Fe2O3. A new method of UV-assisted thermal synthesis is also employed to prepare the new composite photocatalyst. Methyl orange (MO) and Congo red (CR), as model pollutants, are used to test the developed photocatalyst. In addition, nitrogen-doped titanium dioxide photocatalyst (N-TiO2) with heterojunction structures is synthesized by three different approaches including new UV-assisted thermal synthesis, annealing, and microwave techniques. The novel UV-assisted thermal synthesis has produced encouraging results as a preparation method to prepare N-TiO2 at lower temperature and atmospheric pressure as well as a lower cost. Design of Experiment (DOE) along with response surface methodology (RSM) is used to optimize the photocatalytic activity of N-TiO2 as well as the affecting parameters (wavelength, light intensity, pH, and initial TOC) for decomposition of organics. The structure of all synthesized composite photocatalysts are investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) is employed to evaluate surface characteristics and elemental analysis of synthesized photocatalysts. Specific surface area of photocatalysts is measured based on Brunauer, Emmett and Teller (BET) technique. Results show that bare TiO2 has the lowest photocatalytic activity in degradation of organics. When silver is doped to TiO2, the degradation of MO is slightly enhanced at specific mass ratio. The presence of Fe2O3 in the new composite causes a red shift and enhances the potential to absorb higher range of visible light. Results from XRD confirmed that Fe3+ substitutes with Ti4+ in the crystal lattice of TiO2 and crystal defect occurs. The degradation of MO in presence of Ag/TiO2/Fe2O3 (Ag/TiO2=0.005 w:w and Fe:TiO2= 0.01 w:w) reached to 95.6% under sunlight in three hours with a red shift towards visible light. It is observed that there is an optimum specific surface area of photocatalysts by doping and combining photocatalysts.


2021 ◽  
Author(s):  
Shuiping LI

In this work, a magnetic Fe3O4@SiO2@mesoporous-SiO2 (F@S@m-S) material was successfully prepared by a three-step method: firstly, Fe3O4 particles were synthesized through hydro-thermal synthesis process; secondly, Fe3O4@SiO2 materials were fabricated via a template method using tetraethyl orthosilicate (TEOS) as silicon sources and cetyltrimethylammonium chloride (CTAC) as templates; lastly, F@S@m-S materials were prepared through a template method as well. The influence of TEOS/CTAC molar ratio on the morphology and mesostructure was investigated. The product was characterized by Fourier-transform Infrared Spectroscopy (FT-IR), small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscope (TEM), and N2 adsorption-desorption. The results demonstrated that F@S@m-S materials have a well spherical morphology and a typical mesostructure. The increase of TEOS/CTAC molar ratio can improve the mesostructure and crystal form of F@S@m-S materials. The average particle size, specific surface area, average pore size and pore volume of F@[email protected] materials are 130 nm, 77.1 m2/g, 9.2 nm and 0.1668 cm2/g, respectively.


Sign in / Sign up

Export Citation Format

Share Document