scholarly journals Shake table test of RC walls' coupling provided by slabs

2021 ◽  
Vol 64 (4) ◽  
pp. 225-234
Author(s):  
Tatiana Isaković ◽  
M. Gams ◽  
A. Janevski ◽  
Z. Rakićević ◽  
A. Bogdanović ◽  
...  

When designed to the seismic load effects, reinforced concrete walls connected by slabs without coupling beams are usually considered cantilever walls. Several recent studies indicated that slabs themselves could provide strong coupling in some cases, and the walls could respond differently from cantilever walls. To study the slab-to-wall piers interaction, a shake table test of the half-scale three-story specimen was conducted within HORIZON 2020 SERA-TA project. The specimen consisted of four rectangular walls linked by three slabs. It was subjected to a series of seismic excitations of increasing intensity. In the last three tests, the nonlinear response of the slabs and wall piers was observed. At the strong seismic excitations, one pier was subjected to strong tensile, while the adjacent pier was subjected to strong compression forces. The crack pattern of piers was asymmetric and different from the cross-shaped damage pattern, typical for cantilever walls. The coupling of wall piers provided by slabs was considerably stronger than it was expected. The share of the overturning moment resisted by the frame action induced by the slabs was more than 50%. All slabs were fully activated and significantly damaged. Their damage was primarily flexural. The effective width of slabs was equal to their total width.

Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Yuji Sato ◽  
Hajime Takada ◽  
Koji Takahashi

In order to investigate the influence of degradation on dynamic behavior of piping systems and clarify the failure mode of piping systems with local wall thinning, tri-axial shake table tests using three-dimensional piping system models were conducted. The degradation used in this study was wall thinning at elbows and a tee, which was considered to be caused in piping systems due to the effects of aging. The test results show that the dominant frequency and the maximum response acceleration would be reduced due to the existence of wall thinning. Nondestructive inspections such as ultrasonic inspection tests and penetrant inspection tests were applied in the interval of the shake table test in order to detect the damage caused by the repeated shaking. As a result, nondestructive inspection methods would be useful for detecting the damage before the failure caused by the seismic load.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Trevor Zhiqing Yeow ◽  
Koichi Kusunoki ◽  
Izumi Nakamura ◽  
Yo Hibino ◽  
Satoru Fukai ◽  
...  

1996 ◽  
Vol 30 (11) ◽  
pp. 654-663 ◽  
Author(s):  
V. N. Zhukov ◽  
S. V. Ternavskii ◽  
Yu. O. Zal'tsman ◽  
A. A. Lyubomirov

Sign in / Sign up

Export Citation Format

Share Document