Tri-Axial Shake Table Test on the Thinned Wall Piping Model and Damage Detection Before Failure

Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Yuji Sato ◽  
Hajime Takada ◽  
Koji Takahashi

In order to investigate the influence of degradation on dynamic behavior of piping systems and clarify the failure mode of piping systems with local wall thinning, tri-axial shake table tests using three-dimensional piping system models were conducted. The degradation used in this study was wall thinning at elbows and a tee, which was considered to be caused in piping systems due to the effects of aging. The test results show that the dominant frequency and the maximum response acceleration would be reduced due to the existence of wall thinning. Nondestructive inspections such as ultrasonic inspection tests and penetrant inspection tests were applied in the interval of the shake table test in order to detect the damage caused by the repeated shaking. As a result, nondestructive inspection methods would be useful for detecting the damage before the failure caused by the seismic load.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3-D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned wall elbow, because the life of piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Yuji Sato ◽  
Hajime Takada ◽  
Koji Takahashi ◽  
...  

In order to investigate the seismic safety capacity of the piping system with local wall thinning, shake table tests on 3-D piping system models were conducted using E-Defense. Two piping system models which were the same in appearance and different in degradation condition were arranged on the shake table of E-Defense. One of the models was put into degradation condition of about 50% wall thinning at four elbows and one tee. Modified seismic motions were applied to these models at the same time. As a result, the piping system model with wall thinning did not fail for the primary stress limit level of sound piping system model, though a ratchet deformation was observed on the thinned wall tee. The model with wall thinning finally failed at the thinned wall tee by over five times larger excitation than the limit level. From the experiment, it was found that the life of the piping system with wall thinning would be reduced compared with that of the piping system without wall thinning, but it was also found that the degraded piping system still had a certain seismic margin until the piping system failed by the seismic load.


Author(s):  
Satoshi Tsunoi ◽  
Akira Mikami ◽  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

The authors have proposed an analytical model by which they can simulate the dynamic and failure behaviors of piping systems with local wall thinning against seismic loadings. In the previous paper [13], the authors have carried out a series of experimental investigations about dynamic and failure behaviors of the piping system with fully circumferential 50% wall thinning at an elbow or two elbows. In this paper these experiments have been simulated by using the above proposed analytical model and investigated to what extent they can catch the experimental behaviors by simulations.


Author(s):  
Tadahiro Shibutani ◽  
Izumi Nakamura ◽  
Akihito Otani

This paper presents a computational failure analysis of piping systems with and without thinned elbows on tri-axial shake table tests. In a previous experimental study, two piping models, a sound piping system and a degraded piping system with thinned elbows, were assessed. The sound piping system was found to failed at the elbow flank due to in-plane cyclic bending, whereas the degraded system failed at the end of the elbow due to excessive pipe ovalization. In the present study, finite element (FE) models of elbows were developed in order to carry out fracture analysis. The measured displacements of seismic motions were used as the boundary conditions for FE models. In the sound piping system, plastic strain concentrated at the flank of the elbow due to in-plane bending. The cumulative damage factor was calculated from the fatigue curve and Miner’s rule. The effect of ratcheting was also considered. In the failed elbow, the calculated cumulative damage factor showed good agreement with experimental results. On the other hand, for the fracture analysis of the thinned elbow, the entire seismic loading history on the tri-axial shake table was considered, since the effect of pipe ovalization depends on loading history. The ovalization occurred at the elbow due to cumulative seismic loading. Consequently, the principal plastic strain began to concentrate at the end of the elbow. These FE results offer quantitative explanation for the observed failure modes in the degraded piping system.


Author(s):  
Satoshi Fujita ◽  
Osamu Furuya ◽  
Hidetaka Hayashi

In recent years, the importance of the fracturing test using the full-scale model is recognized in order to upgrade an earthquake resistant design. It is, moreover, important to develop a new measurement method which can measure a complex three-dimensional behavior in such fracturing test. This study has been doing research and development of three-dimensional measurement method using an image processing technique for a measurement of dynamic displacement in shake table test without any contact. This measurement system is a very convenient system because it can measure the three-dimensional dynamic displacement in the simple experimental condition that the several makers are only attached to the surface of an experimental structure. The system therefore is the most suitable measurement system for an evaluation of complex three-dimensional behavior of test model. The fundamental hardware and software for the measurement system has been constructed until now. The fundamental dynamic measurement accuracy and effectiveness of the measurement system has been also confirmed from several shake table tests. This paper describes the measurement results of shake table test using historical wooden structure and actual wooden house model in the largest shake table facilities at E-Defense, and evaluates synthetic measurement performance of the developed measurement system.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Tadahiro Shibutani ◽  
Izumi Nakamura ◽  
Akihito Otani

This paper presents a computational failure analysis of piping systems with and without thinned elbows on tri-axial shake table tests. In a previous experimental study, two piping models, a sound piping system and a degraded piping system with thinned elbows, were assessed. The sound piping system was found to fail at the elbow flank due to in-plane cyclic bending, whereas the degraded system failed at the end of the elbow due to excessive pipe ovalization. In the present study, finite element (FE) models of elbows were developed in order to carry out fracture analysis. The measured displacements of seismic motions were used as the boundary conditions for FE models. In the sound piping system, plastic strain concentrated at the flank of the elbow due to in-plane bending. The cumulative damage factor was calculated from the fatigue curve and Miner's rule. The effect of ratcheting was also considered. In the failed elbow, the calculated cumulative damage factor showed good agreement with experimental results. On the other hand, for the fracture analysis of the thinned elbow, the entire seismic loading history on the tri-axial shake table was considered, since the effect of pipe ovalization depends on loading history. The ovalization occurred at the elbow due to cumulative seismic loading. Consequently, the principal plastic strain began to concentrate at the end of the elbow. These FE results offer quantitative explanation for the observed failure modes in the degraded piping system.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
A. Ravikiran ◽  
P. N. Dubey ◽  
M. K. Agrawal ◽  
G. R. Reddy ◽  
R. K. Singh ◽  
...  

Rational seismic design procedures necessitate comprehensive evaluation of nuclear piping systems under large amplitude seismic loads. This comprehensive assessment requires accurate prediction of inelastic response of piping system till failure to ensure adequate margins for unexpected beyond design basis events. The present paper describes the details of experimental and numerical studies of inelastic response of pressurized piping system under seismic loading. Shake table test has been carried out on a three-dimensional stainless steel piping system under internal pressure and seismic load. The amplitude of base excitation has been increased till failure of the piping system. The tested piping system has been analyzed using iterative response spectrum (IRS) method for various levels of excitation. The comparison of numerical and experimental results is given in the paper.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
A. Ravi Kiran ◽  
G. R. Reddy ◽  
P. N. Dubey ◽  
M. K. Agrawal

This article presents the experimental and numerical studies of fatigue-ratcheting in carbon steel piping systems under internal pressure and earthquake load. Shake table tests are carried out on two identical 6 in pressurized piping systems made of carbon steel of grade SA333 Gr 6. Tests are carried out using similar incremental seismic load till failure. Wavelet analysis is carried to evaluate frequency change during testing. The tested piping systems are analyzed using iterative response spectrum (IRS) method, which is based on fatigue-ratcheting and compared with test results. Effect of thickness variation in elbow on strain accumulation is studied. Excitation level for fatigue-ratcheting failure is also evaluated and the details are given in this paper.


2000 ◽  
Vol 122 (4) ◽  
pp. 488-493 ◽  
Author(s):  
Raymond K. Yee ◽  
Marvin J. Cohn

The analysis of the elastic stresses in high-energy piping systems is a routine calculation in the power and petrochemical industries. The American Society of Mechanical Engineers (ASME) B31.1 Power Piping Code was developed for safe design and construction of pressure piping. Postconstruction issues, such as stress relaxation effects and selection of maximum expected creep damage locations, are not addressed in the Code. It has been expensive and time consuming to evaluate creep relaxation stresses in high energy piping systems, such as main steam and hot reheat piping. After prolonged operation of high-energy piping systems at elevated temperatures, it is very difficult to evaluate the redistribution of stresses due to dead weight, pressure, external loading, and thermal loading. The evaluation of stress relaxation and redistribution is especially important when nonideal conditions, such as bottomed-out or topped-out hangers, exist in piping systems. This paper uses three-dimensional four-node quadrilateral shell elements in the ABAQUS finite element code to evaluate the time for relaxation and the nominal relaxation stress values for a portion of a typical high-energy piping system subject to an ideally loaded hanger or to an overloaded hanger. The stress relaxation results are evaluated to suggest an approximation using elastic stress analysis results. [S0094-9930(00)01304-4]


Sign in / Sign up

Export Citation Format

Share Document