reinforced concrete walls
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 96)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 518
Author(s):  
Bo Pu ◽  
Xiaoming Wang ◽  
Weibing Li ◽  
Jun Feng

Steel plate reinforced concrete (SC) walls can effectively resist projectile impact by preventing the rear concrete fragments flying away, thus attracting much attention in defence technology. This work numerically and analytically investigated the hard projectile perforation of steel plate reinforced concrete walls. Impact resistance theories, including cavity expansion analysis as well as the petaling theory of thin steel plates were used to describe the cratering, tunneling and plugging phases of SC walls perforation. Numerical modeling of SC walls perforation was performed to estimate projectile residual velocity and target destructive form, which were validated against the test results. An analytical model for SC wall perforation was established to describe the penetration resistance featuring five stages, i.e., cratering, tunneling and plugging, petaling with plugging and solely petaling. Analytical model predictions matched numerical results well with respect to projectile deceleration evolution as well as residual velocity. From a structural absorbed energy perspective, the effect of front concrete panel and rear steel plate thickness combinations was also studied and analyzed. Finally, equivalent concrete slab thickness was derived with respect to the ballistic limit of SC walls, which may be helpful in the design of a protective strategy.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6569
Author(s):  
Danilo Nicola Dongiovanni ◽  
Matteo D’Onorio

A Demo-Oriented early NEutron Source (DONES) facility for material irradiation with nuclear is currently being designed. DONES aims to produce neutrons with fusion-relevant spectrum and fluence by means of D–Li stripping reactions occurring between a deuteron beam impacting a stable liquid lithium flowing film implementing the target. Given the hazard constituted by the liquid lithium inventory and the potential risk of reactions with water, air, and concrete eventually resulting in fire events, the Target Test Cell (TTC) is filled with helium and the reinforced concrete walls forming the bio-shield are covered with steel liners. A loss of Li in TTC, due to a large break in the Quench Tank, is postulated, and consequences are deterministically studied. With the TTC liner being water-cooled, the impact of the liner temperature rise following a leakage event is evaluated. Two separate MELCOR code models have been defined for the liquid lithium loop and water-cooled loop and are numerically coupled. The amount of leaked inventory dependent on the implemented safety logic and impact on TTC containment is evaluated. The water pressurization pattern within the liner cooling loop is studied to highlight possible risks of lithium–water/concrete reactions.


Sign in / Sign up

Export Citation Format

Share Document