scholarly journals On some mathematical properties of the general zeroth-order Randić coindex of graphs

Author(s):  
I. Milovanović ◽  
M. Matejić ◽  
E. Milovanović ◽  
A. Ali

Let G = (V,E), V = {v1, v2,..., vn}, be a simple connected graph of order n, size m with vertex degree sequence ∆ = d1 ≥ d2 ≥ ··· ≥ dn = d > 0, di = d(vi). Denote by G a complement of G. If vertices vi and v j are adjacent in G, we write i ~ j, otherwise we write i j. The general zeroth-order Randic coindex of ' G is defined as 0Ra(G) = ∑i j (d a-1 i + d a-1 j ) = ∑ n i=1 (n-1-di)d a-1 i , where a is an arbitrary real number. Similarly, general zerothorder Randic coindex of ' G is defined as 0Ra(G) = ∑ n i=1 di(n-1-di) a-1 . New lower bounds for 0Ra(G) and 0Ra(G) are obtained. A case when G has a tree structure is also covered.

Filomat ◽  
2019 ◽  
Vol 33 (16) ◽  
pp. 5249-5258
Author(s):  
Predrag Milosevic ◽  
Igor Milovanovic ◽  
Emina Milovanovic ◽  
Marjan Matejic

Let G=(V,E), V={v1, v2,..., vn}, be a simple connected graph with n vertices, m edges and vertex degree sequence ? = d1?d2 ?...? dn = ? > 0, di = d(vi). General zeroth-order Randic index of G is defined as 0R?(G) = ?ni =1 d?i , where ? is an arbitrary real number. In this paper we establish relationships between 0R?(G) and 0R?-1(G) and obtain new bounds for 0R?(G). Also, we determine relationship between 0R?(G), 0R?(G) and 0R2?-?(G), where ? and ? are arbitrary real numbers. By the appropriate choice of parameters ? and ?, a number of old/new inequalities for different vertex-degree-based topological indices are obtained.


Author(s):  
M.M. Matejić ◽  
E.I. Milovanović ◽  
I. Milovanović

Let G = (V,E), V = {v1, v2,..., vn} be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d1 ≥ d2 ≥ ··· ≥ dn > 0, di = d(vi). The general sumconnectivity coindex is defined as Ha(G) = ∑i j (di + dj) a , while multiplicative first Zagreb coindex is defined as P1(G) = ∏i j (di + dj). Here a is an arbitrary real number, and i j denotes that vertices i and j are not adjacent. Some relations between Ha(G) and P1(G) are obtained.


Filomat ◽  
2020 ◽  
Vol 34 (3) ◽  
pp. 1025-1033
Author(s):  
Predrag Milosevic ◽  
Emina Milovanovic ◽  
Marjan Matejic ◽  
Igor Milovanovic

Let G be a simple connected graph of order n and size m, vertex degree sequence d1 ? d2 ?...? dn > 0, and let ?1 ? ? 2 ? ... ? ?n-1 > ?n = 0 be the eigenvalues of its Laplacian matrix. Laplacian energy LE, Laplacian-energy-like invariant LEL and Kirchhoff index Kf, are graph invariants defined in terms of Laplacian eigenvalues. These are, respectively, defined as LE(G) = ?n,i=1 |?i-2m/n|, LEL(G) = ?n-1 i=1 ??i and Kf (G) = n ?n-1,i=1 1/?i. A vertex-degree-based topological index referred to as degree deviation is defined as S(G) = ?n,i=1 |di- 2m/n|. Relations between Kf and LE, Kf and LEL, as well as Kf and S are obtained.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 683-698 ◽  
Author(s):  
Kinkar Das ◽  
Marjan Matejic ◽  
Emina Milovanovic ◽  
Igor Milovanovic

LetG = (V,E) be a simple connected graph of order n (?2) and size m, where V(G) = {1, 2,..., n}. Also let ? = d1 ? d2 ?... ? dn = ? > 0, di = d(i), be a sequence of its vertex degrees with maximum degree ? and minimum degree ?. The symmetric division deg index, SDD, was defined in [D. Vukicevic, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010) 261- 273] as SDD = SDD(G) = ?i~j d2i+d2j/didj, where i~j means that vertices i and j are adjacent. In this paper we give some new bounds for this topological index. Moreover, we present a relation between topological indices of graph.


2017 ◽  
Vol 97 (1) ◽  
pp. 1-10
Author(s):  
I. MILOVANOVIĆ ◽  
M. MATEJIĆ ◽  
E. GLOGIĆ ◽  
E. MILOVANOVIĆ

Let$G$be a simple connected graph with$n$vertices and$m$edges and$d_{1}\geq d_{2}\geq \cdots \geq d_{n}>0$its sequence of vertex degrees. If$\unicode[STIX]{x1D707}_{1}\geq \unicode[STIX]{x1D707}_{2}\geq \cdots \geq \unicode[STIX]{x1D707}_{n-1}>\unicode[STIX]{x1D707}_{n}=0$are the Laplacian eigenvalues of$G$, then the Kirchhoff index of$G$is$\mathit{Kf}(G)=n\sum _{i=1}^{n-1}\unicode[STIX]{x1D707}_{i}^{-1}$. We prove some new lower bounds for$\mathit{Kf}(G)$in terms of some of the parameters$\unicode[STIX]{x1D6E5}=d_{1}$,$\unicode[STIX]{x1D6E5}_{2}=d_{2}$,$\unicode[STIX]{x1D6E5}_{3}=d_{3}$,$\unicode[STIX]{x1D6FF}=d_{n}$,$\unicode[STIX]{x1D6FF}_{2}=d_{n-1}$and the topological index$\mathit{NK}=\prod _{i=1}^{n}d_{i}$.


Filomat ◽  
2018 ◽  
Vol 32 (8) ◽  
pp. 3031-3042 ◽  
Author(s):  
Ivan Gutman ◽  
Igor Milovanovic ◽  
Emina Milovanovic

Let G be a simple connected graph with n vertices and m edges, and sequence of vertex degrees d1 ? d2 ?...? dn > 0. If vertices i and j are adjacent, we write i ~ j. Denote by ?1, ?*1, Q? and H? the multiplicative Zagreb index, multiplicative sum Zagreb index, general first Zagreb index, and general sumconnectivity index, respectively. These indices are defined as ?1 = ?ni=1 d2i, ?*1 = ?i~j(di+dj), Q? = ?n,i=1 d?i and H? = ?i~j(di+dj)?. We establish upper and lower bounds for the differences H?-m (?1*)?/m and Q?-n(?1)?/2n . In this way we generalize a number of results that were earlier reported in the literature.


2020 ◽  
Vol 44 (4) ◽  
pp. 551-562
Author(s):  
Ivan Gutman ◽  
M. MATEJIC ◽  
E. MILOVANOVIC ◽  
I. MILOVANOVIC

Let G = (V,E), V = {1, 2,…,n}, be a simple connected graph with n vertices and m edges and let d1 ≥ d2 ≥⋅ ⋅⋅≥ dn > 0, be the sequence of its vertex degrees. With i ∼ j we denote the adjacency of the vertices i and j in G. The inverse sum indeg index is defined as ISI = ∑ -didj- di+dj with summation going over all pairs of adjacent vertices. We consider lower bounds for ISI. We first analyze some lower bounds reported in the literature. Then we determine some new lower bounds.


2019 ◽  
Vol 13 (06) ◽  
pp. 2050119
Author(s):  
M. Matejić ◽  
E. Zogić ◽  
E. Milovanović ◽  
I. Milovanović

Let [Formula: see text] be a simple connected graph with [Formula: see text] vertices, [Formula: see text] edges and let [Formula: see text] be its Laplacian eigenvalues. The Laplacian resolvent energy of graph [Formula: see text] is defined by [Formula: see text]. In this paper, we give some new lower bounds for the invariant [Formula: see text].


2021 ◽  
Vol 7 (2) ◽  
pp. 2529-2542
Author(s):  
Chang Liu ◽  
◽  
Jianping Li

<abstract><p>The zeroth-order general Randić index of graph $ G = (V_G, E_G) $, denoted by $ ^0R_{\alpha}(G) $, is the sum of items $ (d_{v})^{\alpha} $ over all vertices $ v\in V_G $, where $ \alpha $ is a pertinently chosen real number. In this paper, we obtain the sharp upper and lower bounds on $ ^0R_{\alpha} $ of trees with a given domination number $ \gamma $, for $ \alpha\in(-\infty, 0)\cup(1, \infty) $ and $ \alpha\in(0, 1) $, respectively. The corresponding extremal graphs of these bounds are also characterized.</p></abstract>


2020 ◽  
pp. 1401-1406
Author(s):  
G. H. SHIRDEL ◽  
H. REZAPOUR ◽  
R. NASIRI

The topological indices are functions on the graph that do not depend on the labeling of their vertices. They are used by chemists for studying the properties of chemical compounds.  Let  be a simple connected graph. The Hyper-Zagreb index of the graph ,  is defined as  ,where  and  are the degrees of vertex  and , respectively. In this paper, we study the Hyper-Zagreb index and give upper and lower bounds for .


Sign in / Sign up

Export Citation Format

Share Document