scholarly journals Relations between ordinary and multiplicative degree-based topological indices

Filomat ◽  
2018 ◽  
Vol 32 (8) ◽  
pp. 3031-3042 ◽  
Author(s):  
Ivan Gutman ◽  
Igor Milovanovic ◽  
Emina Milovanovic

Let G be a simple connected graph with n vertices and m edges, and sequence of vertex degrees d1 ? d2 ?...? dn > 0. If vertices i and j are adjacent, we write i ~ j. Denote by ?1, ?*1, Q? and H? the multiplicative Zagreb index, multiplicative sum Zagreb index, general first Zagreb index, and general sumconnectivity index, respectively. These indices are defined as ?1 = ?ni=1 d2i, ?*1 = ?i~j(di+dj), Q? = ?n,i=1 d?i and H? = ?i~j(di+dj)?. We establish upper and lower bounds for the differences H?-m (?1*)?/m and Q?-n(?1)?/2n . In this way we generalize a number of results that were earlier reported in the literature.

2020 ◽  
pp. 1401-1406
Author(s):  
G. H. SHIRDEL ◽  
H. REZAPOUR ◽  
R. NASIRI

The topological indices are functions on the graph that do not depend on the labeling of their vertices. They are used by chemists for studying the properties of chemical compounds.  Let  be a simple connected graph. The Hyper-Zagreb index of the graph ,  is defined as  ,where  and  are the degrees of vertex  and , respectively. In this paper, we study the Hyper-Zagreb index and give upper and lower bounds for .


Author(s):  
Mohammad Reza Farahani

Let G = (V,E) be a simple connected graph. The sets of vertices and edges of G are denoted by V = V(G) and E = E(G), respectively. There exist many topological indices and connectivity indices in graph theory. The First and Second Zagreb indices were first introduced by Gutman and Trinajstić In1972. It is reported that these indices are useful in the study of anti-inflammatory activities of certain chemical instances, and in elsewhere. In this paper, we focus on the structure of ”G = VC5C7[p,q]”and ”H = HC5C7[p,q]” nanotubes and counting first Zagreb index Zg1(G) = ∑veVdv2 and Second Zagreb index Zg2(G) =∑e=uveE(G)(du·dv) of G and H, as well as First Zagreb polynomial Zg1(G,x ) =∑e=uveE(G)xdu+dv and Second Zagreb Polynomial Zg2(G,x) = ∑e=uveE(G)xdu·dv


2016 ◽  
Vol 08 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Shaohui Wang ◽  
Bing Wei

Let [Formula: see text] be multiplicative Zagreb index of a graph [Formula: see text]. A connected graph is a cactus graph if and only if any two of its cycles have at most one vertex in common, which is a generalization of trees and has been the interest of researchers in the field of material chemistry and graph theory. In this paper, we use a new tool to obtain the upper and lower bounds of [Formula: see text] for all cactus graphs and characterize the corresponding extremal graphs.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 683-698 ◽  
Author(s):  
Kinkar Das ◽  
Marjan Matejic ◽  
Emina Milovanovic ◽  
Igor Milovanovic

LetG = (V,E) be a simple connected graph of order n (?2) and size m, where V(G) = {1, 2,..., n}. Also let ? = d1 ? d2 ?... ? dn = ? > 0, di = d(i), be a sequence of its vertex degrees with maximum degree ? and minimum degree ?. The symmetric division deg index, SDD, was defined in [D. Vukicevic, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010) 261- 273] as SDD = SDD(G) = ?i~j d2i+d2j/didj, where i~j means that vertices i and j are adjacent. In this paper we give some new bounds for this topological index. Moreover, we present a relation between topological indices of graph.


2020 ◽  
Vol 11 (1) ◽  
pp. 8001-8008

A molecular graph is hydrogen deleted simple connected graph in which vertices and edges are represented by atoms and chemical bonds, respectively. Topological indices are numerical parameters of a molecular graph which characterize its topology and are usually graph invariant. In Mathematical chemistry, topological descriptors play an important role in modeling different physical and chemical activities of molecules. In this study, the generalized Zagreb index for three types of carbon nanotubes is computed. By putting some particular values to the parameters, some important degree-based topological indices are also derived.


Author(s):  
Jibonjyoti Buragohain ◽  
A. Bharali

The Zagreb indices are the oldest among all degree-based topological indices. For a connected graph G, the first Zagreb index M1(G) is the sum of the term dG(u)+dG(v) corresponding to each edge uv in G, that is, M1 , where dG(u) is degree of the vertex u in G. In this chapter, the authors propose a weighted first Zagreb index and calculate its values for some standard graphs. Also, the authors study its correlations with various physico-chemical properties of octane isomers. It is found that this novel index has strong correlation with acentric factor and entropy of octane isomers as compared to other existing topological indices.


2009 ◽  
Vol 3 (2) ◽  
pp. 371-378 ◽  
Author(s):  
Bo Zhou ◽  
Ivan Gutman

Let G be a graph with n vertices and let ?1, ?2, . . . , ?n be its Laplacian eigenvalues. In some recent works a quantity called Laplacian Estrada index was considered, defined as LEE(G)?n1 e?i. We now establish some further properties of LEE, mainly upper and lower bounds in terms of the number of vertices, number of edges, and the first Zagreb index.


2017 ◽  
Vol 97 (1) ◽  
pp. 1-10
Author(s):  
I. MILOVANOVIĆ ◽  
M. MATEJIĆ ◽  
E. GLOGIĆ ◽  
E. MILOVANOVIĆ

Let$G$be a simple connected graph with$n$vertices and$m$edges and$d_{1}\geq d_{2}\geq \cdots \geq d_{n}>0$its sequence of vertex degrees. If$\unicode[STIX]{x1D707}_{1}\geq \unicode[STIX]{x1D707}_{2}\geq \cdots \geq \unicode[STIX]{x1D707}_{n-1}>\unicode[STIX]{x1D707}_{n}=0$are the Laplacian eigenvalues of$G$, then the Kirchhoff index of$G$is$\mathit{Kf}(G)=n\sum _{i=1}^{n-1}\unicode[STIX]{x1D707}_{i}^{-1}$. We prove some new lower bounds for$\mathit{Kf}(G)$in terms of some of the parameters$\unicode[STIX]{x1D6E5}=d_{1}$,$\unicode[STIX]{x1D6E5}_{2}=d_{2}$,$\unicode[STIX]{x1D6E5}_{3}=d_{3}$,$\unicode[STIX]{x1D6FF}=d_{n}$,$\unicode[STIX]{x1D6FF}_{2}=d_{n-1}$and the topological index$\mathit{NK}=\prod _{i=1}^{n}d_{i}$.


2020 ◽  
Vol 44 (4) ◽  
pp. 551-562
Author(s):  
Ivan Gutman ◽  
M. MATEJIC ◽  
E. MILOVANOVIC ◽  
I. MILOVANOVIC

Let G = (V,E), V = {1, 2,…,n}, be a simple connected graph with n vertices and m edges and let d1 ≥ d2 ≥⋅ ⋅⋅≥ dn > 0, be the sequence of its vertex degrees. With i ∼ j we denote the adjacency of the vertices i and j in G. The inverse sum indeg index is defined as ISI = ∑ -didj- di+dj with summation going over all pairs of adjacent vertices. We consider lower bounds for ISI. We first analyze some lower bounds reported in the literature. Then we determine some new lower bounds.


Filomat ◽  
2014 ◽  
Vol 28 (10) ◽  
pp. 1983-1988 ◽  
Author(s):  
Shan Gao ◽  
Huiqing Liu

Let G be a connected graph with n vertices and m edges. Let q1, q2,..., qn be the eigenvalues of the signless Laplacian matrix of G, where q1 ? q2 ? ... ? qn. The signless Laplacian Estrada index of G is defined as SLEE(G) = nPi=1 eqi. In this paper, we present some sharp lower bounds for SLEE(G) in terms of the k-degree and the first Zagreb index, respectively.


Sign in / Sign up

Export Citation Format

Share Document