Teaching for Understanding: A Case of Students' Learning to Use the Uniqueness Theorem as a Tool in Differential Equations

2011 ◽  
pp. 153-164 ◽  
Author(s):  
Chris Rasmussen ◽  
Wei Ruan
2002 ◽  
Vol 43 (9) ◽  
pp. 4252-4272 ◽  
Author(s):  
Matthew J. Donald ◽  
Michał Horodecki ◽  
Oliver Rudolph

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1613
Author(s):  
Mun-Jin Bae ◽  
Chan-Ho Park ◽  
Young-Ho Kim

The main purpose of this study was to demonstrate the existence and the uniqueness theorem of the solution of the neutral stochastic differential equations under sufficient conditions. As an alternative to the stochastic analysis theory of the neutral stochastic differential equations, we impose a weakened Ho¨lder condition and a weakened linear growth condition. Stochastic results are obtained for the theory of the existence and uniqueness of the solution. We first show that the conditions guarantee the existence and uniqueness; then, we show some exponential estimates for the solutions.


1970 ◽  
Vol 14 (3) ◽  
pp. 376-384 ◽  
Author(s):  
Helmut Bender

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Atimad Harir ◽  
Said Melliani ◽  
Lalla Saadia Chadli

In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hari Mohan Srivastava ◽  
Pshtiwan Othman Mohammed ◽  
Juan L. G. Guirao ◽  
Y. S. Hamed

<p style='text-indent:20px;'>We consider a class of initial fractional Liouville-Caputo difference equations (IFLCDEs) and its corresponding initial uncertain fractional Liouville-Caputo difference equations (IUFLCDEs). Next, we make comparisons between two unique solutions of the IFLCDEs by deriving an important theorem, namely the main theorem. Besides, we make comparisons between IUFLCDEs and their <inline-formula><tex-math id="M1">\begin{document}$ \varrho $\end{document}</tex-math></inline-formula>-paths by deriving another important theorem, namely the link theorem, which is obtained by the help of the main theorem. We consider a special case of the IUFLCDEs and its solution involving the discrete Mittag-Leffler. Also, we present the solution of its <inline-formula><tex-math id="M2">\begin{document}$ \varrho $\end{document}</tex-math></inline-formula>-paths via the solution of the special linear IUFLCDE. Furthermore, we derive the uniqueness of IUFLCDEs. Finally, we present some test examples of IUFLCDEs by using the uniqueness theorem and the link theorem to find a relation between the solutions for the IUFLCDEs of symmetrical uncertain variables and their <inline-formula><tex-math id="M3">\begin{document}$ \varrho $\end{document}</tex-math></inline-formula>-paths.</p>


1972 ◽  
Vol 15 (4) ◽  
pp. 609-611 ◽  
Author(s):  
Thomas Rogers

The classical uniqueness theorem of Nagumo [1] for ordinary differential equations is as follows.Theorem. If f(t, y) is continuous on 0≤t≤1, -∞<y<∞ and ifthen there is at most one solution to the initial value problem y'=f(t, y), y(0)=0.


Sign in / Sign up

Export Citation Format

Share Document