Effect of gibberellin and cycocel on post harvest life of gerbera cut flowers (Gerbera jamesonii. B) cv. Goliath

2021 ◽  
Vol 53 (1) ◽  
pp. 116-119
Author(s):  
Bishnupada Giri ◽  
Sashikala Beura
2017 ◽  
Vol 18 (3) ◽  
pp. 472
Author(s):  
Alireza Bahadorani ◽  
Hossein Ali Asadi-Gharneh ◽  
Nematallah Etemadi

2021 ◽  
Vol 10 (20) ◽  
pp. 165-171
Author(s):  
Tincuța-Marta Gocan ◽  
Ileana Andreica ◽  
Daniela-Sabina Poșta ◽  
Vasile Lazăr ◽  
Sándor Rózsa ◽  
...  

The cut flowers are living organs, with intense metabolic activity, subjected to a rapid aging process compared to the undetached flowers from the mother plant. Improving the life of cut flowers is one of the most important factors for customer satisfaction. The effect of silver thiosulphate (STS) and commercial mixtures was studied in carnation cut flowers and kept in randomized vases according to experimental factors. Three commercial mixtures were used (Chrysal, Flower Food, Fleur̛ Rose) and for thiosulphate four levels (0 or control, 0.03, 0.06 and 0.9 mM). The interaction of the two factors studied was insignificant for most traits, including wilting percentage and vase lifespan, which may involve the application of both substances alone is sufficient to improve post-harvest quality and is not necessary to use simultaneously in the preservative solution. The results also showed that following the interaction of the two factors, treatment with 0.06 mM silver thiosulphate can be applied to improve the post-harvest quality of blossom cut flowers and commercial chemical mixtures can be successfully replaced.


HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 148-150 ◽  
Author(s):  
Fisun G. Çelikel ◽  
Michael S. Reid

The respiration of cut flowers of gerbera (Gerbera jamesonii H. Bolus ex Hook.f. `Vesuvio') and sunflower (Helianthus annuus L.) increased exponentially with increasing storage temperature. Poststorage vase life and negatively gravitropic bending of the neck of the flowers were both strongly affected by simulated transport at higher temperatures. Vase life and stem bending after dry storage showed highly significant linear relationships (negative and positive, respectively) with the rate of respiration during storage. The data indicate the importance of maintaining temperatures close to the freezing point during commercial handling and transport of these important commercial cut-flower crops for maximum vase life.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 503E-503
Author(s):  
Andrew J. Macnish ◽  
Ria T. Leonard ◽  
Terril A. Nell

The postharvest longevity of fresh-cut flowers is often limited by the accumulation of bacteria in vase water and flower stems. Aqueous chlorine dioxide is a strong biocide with potential application for sanitizing cut flower solutions. We evaluated the potential of chlorine dioxide to prevent the build-up of bacteria in vase water and extend the longevity of cut Matthiola incana `Ruby Red', Gypsophila paniculata `Crystal' and Gerbera jamesonii `Monarch' flowers. Fresh-cut flower stems were placed into sterile vases containing deionized water and either 0.0 or 2 μL·L–1 chlorine dioxide. Flower vase life was then judged at 21 ± 0.5 °C and 40% to 60% relative humidity. Inclusion of 2 μL·L–1 chlorine dioxide in vase water extended the longevity of Matthiola, Gypsophila and Gerbera flowers by 2.2, 3.5, and 3.4 days, respectively, relative to control flowers (i.e., 0 μL·L–1). Treatment with 2 μL·L–1 chlorine dioxide reduced the build-up of aerobic bacteria in vase water for 6 to 9 days of vase life. For example, addition of 2 μL·L–1 chlorine dioxide to Gerbera vase water reduced the number of bacteria that grew by 2.4- to 2.8-fold, as compared to control flower water. These results confirm the practical value of chlorine dioxide treatments to reduce the accumulation of bacteria in vase water and extend the display life of cut flowers.


Sign in / Sign up

Export Citation Format

Share Document