scholarly journals Oceanic mixed layer response to tidal period internal wave motion.

1982 ◽  
Author(s):  
Rolf John. Burger
1983 ◽  
Vol 18 (1) ◽  
pp. 129-150 ◽  
Author(s):  
Mark K. Watson ◽  
R.R. Hudgins ◽  
P.L. Silveston

Abstract Internal wave motion was studied in a laboratory rectangular, primary clarifier. A photo-extinction device was used as a turbidimeter to measure concentration fluctuations in a small volume within the clarifier as a function of time. The signal from this device was fed to a HP21MX minicomputer and the power spectrum plotted from data records lasting approximately 30 min. Results show large changes of wave amplitude as frequency increases. Two distinct regions occur: one with high amplitudes at frequencies below 0.03 Hz, the second with very small amplitudes appears for frequencies greater than 0.1 Hz. The former is associated with internal waves, the latter with flow-generated turbulence. Depth, velocity in the clarifier and inlet suspended solids influence wave amplitudes and the spectra. A variation with position or orientation of the probe was not detected. Contradictory results were found for the influence of flow contraction baffles on internal wave amplitude.


2007 ◽  
Vol 57 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Lakshmi H. Kantha ◽  
Carol Anne Clayson

1999 ◽  
Vol 29 (4) ◽  
pp. 791-806 ◽  
Author(s):  
P. Ravindran ◽  
Daniel G. Wright ◽  
Trevor Platt ◽  
Shubha Sathyendranath

2020 ◽  
Vol 70 (11) ◽  
pp. 1357-1376
Author(s):  
Georg S. Voelker ◽  
Dirk Olbers ◽  
Maren Walter ◽  
Christian Mertens ◽  
Paul G. Myers

Abstract Energy transfer mechanisms between the atmosphere and the deep ocean have been studied for many years. Their importance to the ocean’s energy balance and possible implications on mixing are widely accepted. The slab model by Pollard (Deep-Sea Res Oceanogr Abstr 17(4):795–812, 1970) is a well-established simulation of near-inertial motion and energy inferred through wind-ocean interaction. Such a model is set up with hourly wind forcing from the NCEP-CFSR reanalysis that allows computations up to high latitudes without loss of resonance. Augmenting the one-dimensional model with the horizontal divergence of the near-inertial current field leads to direct estimates of energy transfer spectra of internal wave radiation from the mixed layer base into the ocean interior. Calculations using this hybrid model are carried out for the North Atlantic during the years 1989 and 1996, which are associated with positive and negative North Atlantic Oscillation index, respectively. Results indicate a range of meridional regimes with distinct energy transfer ratios. These are interpreted in terms of the mixed layer depth, the buoyancy frequency at the mixed layer base, and the wind field structure. The average ratio of radiated energy fluxes from the mixed layer to near-inertial wind power for both years is approximately 12%. The dependence on the wind structure is supported by simulations of idealized wind stress fronts with variable width and translation speeds.


Sign in / Sign up

Export Citation Format

Share Document