research aircraft
Recently Published Documents


TOTAL DOCUMENTS

624
(FIVE YEARS 138)

H-INDEX

42
(FIVE YEARS 5)

Abstract Understanding ice development in Cumulus Congestus (CuCg) clouds, which are ubiquitous globally, is critical for improving our knowledge of cloud physics, cloud resolution and climate prediction models. Results presented here are representative of data collected in 1,008 penetrations of moderate to strong updrafts in CuCg clouds by five research aircraft in six geographic locations. The results show that CuCg with warm (> ∼20°C) cloud base temperatures, such as in tropical marine environments, experience a strong collision-coalescence process. Development of coalescence is also correlated with drop effective radius > ∼12 to 14 µm in diameter. Increasing the cloud-base drop concentration with diameters from 15 to 35 µm and decreasing the drop concentration < 15 µm appears to enhance coalescence. While the boundary-layer aerosol population is not a determinate factor in development of coalescence in tropical marine environments, its impact on coalescence is not yet fully determined. Some supercooled large drops generated via coalescence fracture when freezing, producing a secondary ice process (SIP) with production of copious small ice particles that naturally seed the cloud. The SIP produces an avalanche effect, freezing the majority of supercooled liquid water before fresh updrafts reach the −16°C level. Conversely, CuCg with cloud base temperatures ≤ ∼8°C develop significant concentrations of ice particles at colder temperatures, so that small supercooled water drops are lofted to higher elevations before freezing. Recirculation of ice in downdrafts at the edges of updrafts appears to be the primary mechanism for development of precipitation in CuCg with colder cloud base temperatures.


2022 ◽  
Author(s):  
Sandrine Bony ◽  
Marie Lothon ◽  
Julien Delanoë ◽  
Pierre Coutris ◽  
Jean-Claude Etienne ◽  
...  

Abstract. As part of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field campaign, which took place in January and February 2020 over the western tropical Atlantic near Barbados, the French SAFIRE ATR42 research aircraft conducted 19 flights in the lower troposphere. Each flight followed a common flight pattern that sampled the atmosphere around the cloud-base level, at different heights of the subcloud layer, near the sea surface and in the lower free troposphere. The aircraft's payload included a backscatter lidar and a Doppler cloud radar that were both horizontally oriented, a Doppler cloud radar looking upward, microphysical probes, a cavity ring-down spectrometer for water isotopes, a multiwavelength radiometer, a visible camera and multiple meteorological sensors, including fast rate sensors for turbulence measurements. With this instrumentation, the ATR characterized the macrophysical and microphysical properties of trade-wind clouds together with their thermodynamical, turbulent and radiative environment. This paper presents the airborne operations, the flight segmentation, the instrumentation, the data processing and the EUREC4A datasets produced from the ATR measurements. It shows that the ATR measurements of humidity, wind and cloud-base cloud fraction measured with different techniques and samplings are internally consistent, that meteorological measurements are consistent with estimates from dropsondes launched from an overflying aircraft (HALO), and that water isotopic measurements are well correlated with data from the Barbados Cloud Observatory. This consistency demonstrates the robustness of the ATR measurements of humidity, wind, cloud-base cloud fraction and water isotopic composition during EUREC4A. It also confirms that through their repeated flight patterns, the ATR and HALO measurements provided a statistically consistent sampling of trade-wind clouds and of their environment. The ATR datasets are freely available at the locations specified in Table 11.


2021 ◽  
Vol 13 (12) ◽  
pp. 5899-5914
Author(s):  
Martin Hagen ◽  
Florian Ewald ◽  
Silke Groß ◽  
Lothar Oswald ◽  
David A. Farrell ◽  
...  

Abstract. The German polarimetric C-band weather radar Poldirad (Polarization Diversity Radar) was deployed for the international field campaign EUREC4A (Elucidating the role of clouds–circulation coupling in climate) on the island of Barbados where it was operated from February until August 2020. Focus of the installation was monitoring clouds and precipitation in the trade wind region east of Barbados. Different scanning modes were used with a temporal sequence of 5 min and a maximum range of 375 km. In addition to built-in quality control performed by the radar signal processor, it was found that the copoloar correlation coefficient ρHV can be used to remove contamination of radar products by sea clutter. Radar images were available in real time for all campaign participants and aboard research aircraft. Examples of mesoscale precipitation patterns, rain rate accumulation, diurnal cycle, and vertical distribution are given to show the potential of the radar measurements for further studies on the life cycle of precipitating shallow cumulus clouds and other related aspects. Poldirad data from the EUREC4A campaign are available on the EUREC4A AERIS database: https://doi.org/10.25326/218 (Hagen et al., 2021a) for raw data and https://doi.org/10.25326/217 (Hagen et al., 2021b) for gridded data.


2021 ◽  
Author(s):  
Clara M. Nussbaumer ◽  
Andrea Pozzer ◽  
Ivan Tadic ◽  
Lenard Röder ◽  
Florian Obersteiner ◽  
...  

Abstract. The COVID-19 (Coronavirus disease 2019) European lockdowns have lead to a significant reduction in the emissions of primary pollutants such as NO (nitric oxide) and NO2 (nitrogen dioxide). As most photochemical processes are related to nitrogen oxide (NOx ≡ NO + NO2) chemistry, this event has presented an exceptional opportunity to investigate its effects on air quality and secondary pollutants, such as tropospheric ozone (O3). In this study, we present the effects of the COVID-19 lockdown on atmospheric trace gas concentrations, net ozone production rates (NOPR) and the dominant chemical regime throughout the troposphere based on three different research aircraft campaigns across Europe. These are the UTOPIHAN campaigns in 2003 and 2004, the HOOVER campaigns in 2006 and 2007 and the BLUESKY campaign in 2020, the latter performed during the COVID-19 lockdown. We present in situ observations and simulation results from the ECHAM5/MESSy Atmospheric Chemistry model which allows for scenario calculations with business as usual emissions during the BLUESKY campaign, referred to as "no-lockdown scenario". We show that the COVID-19 lockdown reduced NO and NO2 mixing ratios in the upper troposphere by around 55 % compared to the no-lockdown scenario due to reduced air traffic. O3 production and loss terms reflected this reduction with a deceleration in O3 cycling due to reduced mixing ratios of NOx while NOPRs were largely unaffected. We also study the role of methyl peroxyradicals forming HCHO (αCH3O2) to show that the COVID-19 lockdown shifted the chemistry in the upper troposphere/tropopause region to a NOx limited regime during BLUESKY. In comparison, we find a VOC limited regime to be dominant during UTOPIHAN.


2021 ◽  
Vol 21 (23) ◽  
pp. 17513-17528
Author(s):  
Ramon Campos Braga ◽  
Barbara Ervens ◽  
Daniel Rosenfeld ◽  
Meinrat O. Andreae ◽  
Jan-David Förster ◽  
...  

Abstract. Aerosol–cloud interactions contribute to the large uncertainties in current estimates of climate forcing. We investigated the effect of aerosol particles on cloud droplet formation by model calculations and aircraft measurements over the Amazon and over the western tropical Atlantic during the ACRIDICON–CHUVA campaign in September 2014. On the HALO (High Altitude Long Range Research) research aircraft, cloud droplet number concentrations (Nd) were measured near the base of clean and polluted growing convective cumuli using a cloud combination probe (CCP) and a cloud and aerosol spectrometer (CAS-DPOL). An adiabatic parcel model was used to perform cloud droplet number closure studies for flights in differently polluted air masses. Model input parameters included aerosol size distributions measured with an ultra-high sensitive aerosol spectrometer (UHSAS), in combination with a condensation particle counter (CPC). Updraft velocities (w) were measured with a boom-mounted Rosemount probe. Over the continent, the aerosol size distributions were dominated by accumulation mode particles, and good agreement between measured and modeled Nd values was obtained (deviations ≲ 10 %) assuming an average hygroscopicity of κ∼0.1, which is consistent with Amazonian biomass burning and secondary organic aerosol. Above the ocean, fair agreement was obtained assuming an average hygroscopicity of κ∼0.2 (deviations ≲ 16 %) and further improvement was achieved assuming different hygroscopicities for Aitken and accumulation mode particles (κAit=0.8, κacc=0.2; deviations ≲ 10 %), which may reflect secondary marine sulfate particles. Our results indicate that Aitken mode particles and their hygroscopicity can be important for droplet formation at low pollution levels and high updraft velocities in tropical convective clouds.


2021 ◽  
Vol 13 (12) ◽  
pp. 5545-5563
Author(s):  
Heike Konow ◽  
Florian Ewald ◽  
Geet George ◽  
Marek Jacob ◽  
Marcus Klingebiel ◽  
...  

Abstract. As part of the EUREC4A (Elucidating the role of cloud–circulation coupling in climate) field campaign, the German research aircraft HALO (High Altitude and Long Range Research Aircraft), configured as a cloud observatory, conducted 15 research flights in the trade-wind region east of Barbados in January and February 2020. Narrative text, aircraft state data, and metadata describing HALO's operation during the campaign are provided. Each HALO research flight is segmented by timestamp intervals into standard elements to aid the consistent analysis of the flight data. Photographs from HALO's cabin and animated satellite images synchronized with flight tracks are provided to visually document flight conditions. As a comprehensive product from the remote sensing observations, a multi-sensor cloud mask product is derived and quantifies the incidence of clouds observed during the flights. In addition, to lower the threshold for new users of HALO's data, a collection of use cases is compiled into an online book, How to EUREC4A, included as an asset with this paper. This online book provides easy access to most of EUREC4A's HALO data through an intake catalogue. Code and data are freely available at the locations specified in Table 6.


2021 ◽  
Vol 21 (23) ◽  
pp. 17225-17241
Author(s):  
Markus Jesswein ◽  
Heiko Bozem ◽  
Hans-Christoph Lachnitt ◽  
Peter Hoor ◽  
Thomas Wagenhäuser ◽  
...  

Abstract. Stratospheric inorganic chlorine (Cly) is predominantly released from long-lived chlorinated source gases and, to a small extent, very short-lived chlorinated substances. Cly includes the reservoir species (HCl and ClONO2) and active chlorine species (i.e., ClOx). The active chlorine species drive catalytic cycles that deplete ozone in the polar winter stratosphere. This work presents calculations of inorganic chlorine (Cly) derived from chlorinated source gas measurements on board the High Altitude and Long Range Research Aircraft (HALO) during the Southern Hemisphere Transport, Dynamic and Chemistry (SouthTRAC) campaign in austral late winter and early spring 2019. Results are compared to Cly in the Northern Hemisphere derived from measurements of the POLSTRACC-GW-LCYCLE-SALSA (PGS) campaign in the Arctic winter of 2015/2016. A scaled correlation was used for PGS data, since not all source gases were measured. Using the SouthTRAC data, Cly from a scaled correlation was compared to directly determined Cly and agreed well. An air mass classification based on in situ N2O measurements allocates the measurements to the vortex, the vortex boundary region, and midlatitudes. Although the Antarctic vortex was weakened in 2019 compared to previous years, Cly reached 1687±19 ppt at 385 K; therefore, up to around 50 % of total chlorine was found in inorganic form inside the Antarctic vortex, whereas only 15 % of total chlorine was found in inorganic form in the southern midlatitudes. In contrast, only 40 % of total chlorine was found in inorganic form in the Arctic vortex during PGS, and roughly 20 % was found in inorganic form in the northern midlatitudes. Differences inside the two vortices reach as much as 540 ppt, with more Cly in the Antarctic vortex in 2019 than in the Arctic vortex in 2016 (at comparable distance to the local tropopause). To our knowledge, this is the first comparison of inorganic chlorine within the Antarctic and Arctic polar vortices. Based on the results of these two campaigns, the differences in Cly inside the two vortices are substantial and larger than the inter-annual variations previously reported for the Antarctic.


2021 ◽  
Vol 14 (11) ◽  
pp. 7381-7404
Author(s):  
Steven G. Howell ◽  
Steffen Freitag ◽  
Amie Dobracki ◽  
Nikolai Smirnow ◽  
Arthur J. Sedlacek III

Abstract. The ultra-high-sensitivity aerosol spectrometer (UHSAS) differs from most other optical particle spectrometers by using a high-power infrared (IR) laser to detect small particles and reduce the sizing ambiguity due to the non-monotonicity of scattering with particle size. During the NASA ORACLES project (ObseRvations of Aerosols above CLouds and their intEractionS) over the southeast Atlantic Ocean, the UHSAS clearly undersized particles in the biomass burning plume extending from southern Africa. Since the horizontal and vertical extent of the plume was vast, the NASA P-3B research aircraft often flew through a fairly uniform biomass burning plume for periods exceeding 30 min, sufficient time to explore the details of the UHSAS response by selecting single particle sizes with a differential mobility analyzer (DMA) and passing them to the UHSAS. This was essentially an in-flight calibration of the UHSAS using the particles of interest. Two modes of responses appeared. Most particles were undersized by moderate amounts, ranging from not at all for 70 nm aerosols to 15 % for 280 nm particles. Mie scattering calculations show that composition-dependent refractive index of the particles cannot explain the pattern. Heating of brown carbon or tarballs in the beam causing evaporation and shrinking of the particles is the most plausible explanation, though mis-sizing due to non-sphericity cannot be ruled out. A small fraction (10 %–30 %) of the particles were undersized by 25 % to 35 %. Those were apparently the particles containing refractory black carbon. Laboratory calibrations confirm that black carbon is drastically undersized by the UHSAS, because particles heat to their vaporization point and shrink. A simple empirical correction equation was implemented that dramatically improves agreement with DMA distributions between 100 and 500 nm. It raised the median particle diameter by 18 nm, from 163 to 181 nm, during the August 2017 deployment and by smaller amounts during deployments with less intense pollution. Calculated scattering from UHSAS size distributions increased by about 130 %, dramatically improving agreement with scattering measured by nephelometers. The correction is only valid in polluted instances; clean marine boundary layer and free troposphere aerosols behaved more like the calibration spheres. We were unable to directly test the correction between 500 and 1000 nm, though aerodynamic particle sizer (APS) data appear to show that the correction is poor at the largest diameters, which is no surprise as the composition of those particles is likely to be quite different than that of the accumulation mode. This adds to the evidence that UHSAS data must be treated cautiously whenever the aerosol may absorb infrared light. Similar corrections may be required whenever brown carbon aerosol is present.


2021 ◽  
Author(s):  
Michael Schäfer ◽  
Kevin Wolf ◽  
André Ehrlich ◽  
Christoph Hallbauer ◽  
Evelyn Jäkel ◽  
...  

Abstract. The new airborne thermal infrared (TIR) imager VELOX (Video airbornE Longwave Observations within siX channels) is introduced. The commercial camera system of VELOX covers six spectral bands with center wavelengths between 7.7 µm and 12 µm. VELOX is currently applied on board the German High Altitude and Long Range Research Aircraft (HALO). It observes two-dimensional fields of upward terrestrial spectral radiance with a horizontal spatial resolution of approximately 10 m by 10 m at a target distance of 10 km. Atmospheric temperature values are rather low compared to the original application of the TIR imager system and range close to the detection limit of the sensor. This challenge requires additional calibration efforts to reduce the measurement uncertainties of VELOX. These calibration and correction procedures, including radiometric calibrations, non-uniform corrections, bad-pixel replacements, and window corrections for data collected by VELOX, are presented. First measurements acquired by VELOX during the EUREC4A (ElUcidating the RolE of Cloud-Circulation Coupling in ClimAte) campaign are presented, including an analyses of the cloud top brightness temperature, cloud mask/fraction, and cloud top altitude data. They reveal that the cloud top temperature can be resolved with a resolution of better than 0.1 K, which translates into a resolution of approximately 40 m with respect to cloud top altitude.


2021 ◽  
pp. 1-35
Author(s):  
W.A. Memon ◽  
M.D. White ◽  
G.D. Padfield ◽  
N. Cameron ◽  
L. Lu

Abstract The research reported in this paper is aimed at the development of a metric to quantify and predict the extent of pilot control compensation required to fly a wide range of mission task elements. To do this, the utility of a range of time- and frequency-domain measures to examine pilot control activity whilst flying hover/low-speed and forward flight tasks are explored. The tasks were performed by two test pilots using both the National Research Council (Canada)’s Bell 412 Advanced Systems Research Aircraft and the University of Liverpool’s HELIFLIGHT-R simulator. Handling qualities ratings were awarded for each of the tasks and compared with a newly developed weighted adaptive control compensation metric based on discrete pilot inputs, showing good correlation. Moreover, in combination with a time-varying frequency-domain exposure, the proposed metric is shown to be useful for understanding the relationship between the pilot’s subjective assessment, measured control activity and task performance. By collating the results from the subjective and objective metrics for a range of different mission task elements, compensation boundaries are proposed to predict and verify the subjective assessments from the Cooper-Harper Handling Qualities Rating scale.


Sign in / Sign up

Export Citation Format

Share Document