The Global equivalence ratio concept and the prediction of carbon monoxide formation in enclosure fires

Author(s):  
William M Pitts
Author(s):  
Wirya Sarwana ◽  
Akihiko Anzai ◽  
Daichi Takami ◽  
Akira Yamamoto ◽  
Hisao Yoshida

Photocatalytic steam reforming of methane (PSRM) has been studied as an attractive method to produce hydrogen by utilizing photoenergy like solar energy around room temperature with metal-loaded photocatalysts, where methane...


1954 ◽  
Author(s):  
G.J. Alkire ◽  
R.D. Tillson ◽  
H.J. Anderson ◽  
J.L. Carroll

2017 ◽  
Vol 79 (2) ◽  
Author(s):  
Muhammad Roslan Rahim ◽  
Mohammad Nazri Mohd Jaafar

Formation of nitrogen oxide (NOx), carbon monoxide (CO) and other emissions is increasing dramatically in the atmosphere. Due to this pressing issue, a study on combustion performance was conducted using a double radial swirler. In this study, a weak swirler with an angle of 30º is set as a primary swirler and strong swirlers each with an angle of 40º, 50º and 60º are set as secondary swirler. Combinations of these swirlers have increased internal recirculation of hot air and help to complete the mixing of fuel and air during combustion. Results show that the combination of 30º/60º swirler produced the best, more stable and shorter flame than the other combinations. Formation of NOX from the 30º/60º swirlers at equivalence ratio of 0.8333 is 27.3% lower than that from the combined 30º/40º swirlers. Other emissions such as CO, CO2 and UHC (Unburned Hydrocarbons) also show a reduction of 12.71%, 10.6% and 5.3%, respectively in the 30º/60º swirlers compared to those from the 30º/40º swirlers.


Author(s):  
Colin H. Smith ◽  
Daniel M. Leahey ◽  
Liane E. Miller ◽  
Janet L. Ellzey ◽  
Michael E. Webber

Because of converging concerns about global climate change and depletion of conventional petroleum resources, many nations are looking for ways to create transportation fuels that are not derived from fossil fuels. Biofuels and hydrogen (H2) have the potential to meet this goal. Biofuels are attractive because they can be domestically produced and consume carbon dioxide (CO2) during the feedstock growth cycle. Hydrogen is appealing because its use emits no CO2, and because hydrogen fuel cells can be very efficient. Today most hydrogen is derived from syngas, a mixture of hydrogen, carbon monoxide (CO) and carbon dioxide, which is produced through catalytic steam reforming of methane (CH4). Although effective, this process still produces CO2. Another method used to generate hydrogen is water electrolysis, but this process is extremely energy intensive. Thus, finding an energy-efficient approach to producing hydrogen from biofeedstock is appealing. Though there are many biofuels, ethanol (C2H5OH) is a popular choice for replacing fossil fuels. However, many have questioned its value as a renewable fuel since it requires a significant amount of energy to produce, especially from corn. Producing pure ethanol requires substantial energy for distillation and dehydration to yield an appropriate “dry” fuel for traditional combustion engines. Wet ethanol, or ethanol that has not been fully distilled and dehydrated, requires significantly less energy to create than pure ethanol. In this paper, we present a non-catalytic pathway to produce hydrogenrich syngas from wet ethanol. The presence of water in the reactant fuel can increase the hydrogen mole fraction and decrease the carbon monoxide mole fraction of the product syngas, both of which are desired effects. Also, because there are no catalytic surfaces, the problems of coking and poisoning that typically plague biomass-to-hydrogen reforming systems are eliminated. The non-catalytic fuel reforming process presented herein is termed filtration combustion. In this process, a fuel-rich mixture of air and fuel is reacted in an inert porous matrix to produce syngas. Some of the ethanol and air mixtures under study lie outside the conventional rich flammability limits. These mixtures react because high local temperatures are created as the reaction front propagates into a region where the solid matrix has been heated by exhaust gases. These high temperatures effectively broaden the flammability limits, allowing the mixture to react and break down the fuel into syngas. The conversion of pure and wet ethanol is a novel application of this process. Exhaust composition measurements were taken for a range of water fractions and equivalence ratios (Φ) and were compared to equilibrium values. The water fraction is the volumetric fraction of the inlet fuel and water mixture that is water. Equivalence ratio is the ratio of the fuel to oxidizer ratio of the reactant mixture to the fuel to oxidizer ratio of a stoichiometric mixture. A stoichiometric mixture is defined as a mixture with proportions of fuel and oxidizer that would react to produce only water and carbon dioxide. The stoichiometric mixture (Φ = 1) of ethanol and oxygen (O2) is 1 mole of ethanol for every 3 moles of oxygen: C2H5OH+3O2↔2CO2+3H2O Hydrogen mole fraction of the exhaust gas increased with increasing equivalence ratio and remained nearly constant for increasing water-in-fuel concentration. Carbon monoxide mole fraction was also measured because it may be used as a fuel for certain fuel cells while it can poison others [1]. Species and energy conversion efficiencies were calculated, showing that significant energy savings could be made by reforming wet ethanol rather than pure ethanol into syngas. Also, it is shown that the hydrogen to carbon monoxide ratio increases with addition of water to the fuel, making this method attractive for the production of pure hydrogen.


Author(s):  
Sylwia Stegenta-Dąbrowska ◽  
Grzegorz Drabczyński ◽  
Karolina Sobieraj ◽  
Jacek A. Koziel ◽  
Andrzej Białowiec

Sign in / Sign up

Export Citation Format

Share Document