scholarly journals Life-cycle cost comparison of the NIST net zero energy residential test facility to a Maryland code-compliant design

Author(s):  
Joshua Kneifel
Author(s):  
William M Healy ◽  
A Hunter Fanney ◽  
Brian P Dougherty ◽  
Lisa Ng ◽  
Vance Payne ◽  
...  

Data were collected over two separate year-long test periods at the Net-Zero Energy Residential Test Facility, alaboratory designed to evaluate a variety of technologies and operational strategies that lead to energy efficient houses with comfortable and healthful indoor environments. In a net-zero energy building, all energy consumption over the course of a year is offset by on-site renewable energy production; this facility attempts to meet that goal through use of a photovoltaic array installed on the roof. Data are presented for one-year test periods over which the research team examined whether the facility would reach net-zero status. In both years, the house was operated in an all-electric configuration, with slight modifications made in the second year related to control schemes and equipment selection. A virtual family of four was simulated to carry out the operations that would typically occur in a home (e.g., appliance usage, lighting usage, hot water usage). Data are being released for the second year of operation at the time of publication of this document, with an expectation that data from the first year will be released at a later date.


2021 ◽  
Vol 13 (22) ◽  
pp. 12831
Author(s):  
Alex Ximenes Naves ◽  
Laureano Jiménez Esteller ◽  
Assed Naked Haddad ◽  
Dieter Boer

Economy and parsimony in the consumption of energy resources are becoming a part of common sense in practically all countries, although the effective implementation of energy efficiency policies still has a long way to go. The energy demand for residential buildings is one of the most significant energy sinks. We focus our analysis on one of the most energy-consuming systems of residential buildings located in regions of tropical climate, which are cooling systems. We evaluate to which degree the integration of thermal energy storage (TES) and photovoltaic (PV) systems helps to approach an annual net zero energy building (NZEB) configuration, aiming to find a feasible solution in the direction of energy efficiency in buildings. To conduct the simulations, an Energy Efficiency Analysis Framework (EEAF) is proposed. A literature review unveiled a potential knowledge gap about the optimization of the ASHRAE operational modes (full storage load, load leveled, and demand limiting) for air conditioning/TES sets using PV connected to the grid. A hypothetical building was configured with detailed loads and occupation profiles to simulate different configurations of air conditioning associated with TES and a PV array. Using TRNSYS software, a set of scenarios was simulated, and their outputs are analyzed in a life cycle perspective using life cycle costing (LCC). The modeling and simulation of different scenarios allowed for identifying the most economic configurations from a life cycle perspective, within a safe range of operability considering the energy efficiency and consequently the sustainability aspects of the buildings. The EEAF also supports other profiles, such as those in which the occupancy of residential buildings during the day is increased due to significant changes in people’s habits, when working and studying in home office mode, for example. These changes in habits should bring a growing interest in the adoption of solar energy for real-time use in residential buildings. The results can be used as premises for the initial design or planning retrofits of buildings, aiming at the annual net zero energy balance.


Sign in / Sign up

Export Citation Format

Share Document