scholarly journals Development and Acceptance Test Results of 75-tonf Class Liquid Rocket Engine Gas Generator

2020 ◽  
Vol 24 (4) ◽  
pp. 55-65
Author(s):  
Byoungjik Lim ◽  
Munki Kim ◽  
Donghyuk Kang ◽  
Hyeon-Jun Kim ◽  
Jong-Gyu Kim ◽  
...  
2002 ◽  
Vol 124 (2) ◽  
pp. 363-368 ◽  
Author(s):  
F. Laurant ◽  
D. W. Childs

Test results are presented for the rotordynamic coefficients of a hybrid bearing that is representative of bearings for liquid-rocket-engine turbopump applications. The bearing is tested in the following two degraded conditions: (a) one of five orifices plugged, and (b) a locally enlarged clearance to simulate a worn condition. Test data are presented at 24,600 rpm, with supply pressures of 4.0, 5.5, and 7.0 MPa, and eccentricity ratios from 0.1 to 0.5 in 0.1 increments. Overall, the results suggest that neither a single plugged orifice nor significant wear on the bearing land will “disable” a well-designed hybrid bearing. These results do not speak to multiple plugged orifices and are not an endorsement for operations without filters to prevent plugging orifices.


Author(s):  
Franck Laurant ◽  
Dara W. Childs

Test results are presented for the rotordynamic coefficients of a hybrid bearing that is representative of bearings for liquid-rocket-engine turbopump applications. The bearing is tested in the following two degraded conditions: (a) one of five orifices plugged, and (b) a locally-enlarged clearance to simulate a worn condition. Test data are presented at 24600 rpm, with supply pressures of 4.0, 5.5, and 7.0 MPa, and eccentricity ratios from 0.1 to 0.5 in 0.1 increments. Overall, the results suggest that neither a single plugged orifice nor significant wear on the bearing land will “disable’ a well designed hybrid bearing. These results do not speak to multiple plugged orifices and are not an endorsement for operations without filters to prevent plugging orifices.


Author(s):  
Soon-Sam Hong ◽  
Dae-Jin Kim ◽  
Jin-Sun Kim ◽  
Jinhan Kim

This article describes a series of development tests of a turbopump, which can be applied to a gas generator cycle rocket engine with liquid oxygen and kerosene propellants. A turbine drives both an oxidizer pump and a fuel pump in the turbopump assembly. In the tests, liquid oxygen and kerosene are supplied to the oxidizer pump and the fuel pump, respectively, while either cold hydrogen gas or hot gas from the gas generator is supplied to the turbine. The turbopump is operated reliably at both on-design and off-design conditions, meeting all the performance requirements. The test results are compared with those of the turbopump component tests, where model fluids are used, that is, water for the oxidizer pump and the fuel pump, and cold air for the turbine. The turbopump tests results agree well with the turbopump component test results. The speed buildup of the turbopump at start period is calculated when pressurized gas is used to initially spin the turbine. A differential equation which represents the torque balance between the turbine and the pumps is solved. The calculation shows a good agreement with the test result. When the mechanical loss of the turbopump is considered, a better estimation is obtained.


Sign in / Sign up

Export Citation Format

Share Document