scholarly journals What Object-Oriented Programming May Be: - and What It Does Not Have to Be

1989 ◽  
Vol 18 (273) ◽  
Author(s):  
Ole Lehrmann Madsen ◽  
Birger Møller-Pedersen

A conceptual framework for object-oriented programming is presented. The framework is independent of specific programming language constructs. It is illustrated how this framework is reflected in an object-oriented language and the language mechanisms are compared with the corresponding elements of other object-oriented languages. Main issues of object-oriented programming are considered on the basis of the framework presented here.

1991 ◽  
Vol 57 (3-4) ◽  
pp. 221-236 ◽  
Author(s):  
Masahiko Sekine ◽  
Hiroshi Nakanishi ◽  
Masao Ukita ◽  
Sadaaki Murakami

Author(s):  
Hans Fehr ◽  
Fabian Kindermann

Before diving into the art of solving economic problems on a computer, we want to give a short introduction into the syntax and semantics of Fortran 90. As describing all features of the Fortran language would probably fill some hundred pages, we concentrate on the basic features that will be needed to follow the rest of this textbook. Nevertheless, there are various Fortran tutorials on the Internet that can be used as complementary literature. Fortran is pretty old; it is actually considered the first known higher programming language. Going back to a proposal made by John W. Backus, an IBM programmer, in 1953, the term Fortran is derived from The IBM Formula Translation System. Before the release of the first Fortran compiler in April 1957, people used to use assembly languages. The introduction of a higher programming language compiler tremendously reduced the number of code lines needed to write a program. Therefore, the first release of the Fortran programming language grew pretty fast in popularity. From 1957 on, several versions followed the initial Fortran version, namely FORTRAN II and FORTRAN III in 1958, and FORTRAN IV in 1961. In 1966, the American Standards Association (now known as the ANSI) approved a standardized American Standard Fortran. The programming language defined on this standard was called FORTRAN 66. Approving an updated standard in 1977, the ANSI paved the way for a new version of Fortran known as FORTRAN 77. This version became popular in computational economics during the late 80s and early 90s. More than 13 years later, the Fortran 90 standard was released by both the International Organization for Standardization (ISO) and ANSI consecutively. With Fortran 90, the fixed format standard was exchanged by a free format standard and, in addition, many new features like modules, recursive procedures, derived data types, and dynamic memory allocation made the language much more flexible. From Fortran 90 on, there has only been one major revision, in 2003, which introduced object oriented programming features into the Fortran language. However, as object-oriented programming will not be needed and Fortran 90 is by far the more popular language, we will focus on the 1990 version in this book.


Author(s):  
Vincenzo De Florio

The programming language itself is the focus of this chapter: Fault-tolerance is not embedded in the program (as it is the case e.g. for single-version fault-tolerance), nor around the language (through compilers or translators); on the contrary, faulttolerance is provided through the syntactical structures and the run-time executives of fault-tolerance programming languages. Also in this case a significant part of the complexity of dependability enforcement is moved from each single code to the architecture, in this case the programming language. Many cases exist of fault-tolerance programming languages; this chapter proposes a few of them, considering three cases: Object-oriented languages, functional languages, and hybrid languages. In particular it is discussed the case of Oz, a multi-paradigm programming language that achieves both transparent distribution and translucent failure handling.


Sign in / Sign up

Export Citation Format

Share Document