scholarly journals Free resolutions of Dynkin format and the licci property of grade $3$ perfect ideals

2019 ◽  
Vol 125 (2) ◽  
pp. 163-178
Author(s):  
Lars Winther Christensen ◽  
Oana Veliche ◽  
Jerzy Weyman

Recent work on generic free resolutions of length $3$ attaches to every resolution a graph and suggests that resolutions whose associated graph is a Dynkin diagram are distinguished. We conjecture that in a regular local ring, every grade $3$ perfect ideal whose minimal free resolution is distinguished in this way is in the linkage class of a complete intersection.

2017 ◽  
Vol 230 ◽  
pp. 35-47 ◽  
Author(s):  
HOP D. NGUYEN ◽  
THANH VU

This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$, introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$. Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved that for any ideal $I$ in a regular local ring $R$ and for any finitely generated $R$-module $M$, each of the sequences $(\text{ld}_{R}(I^{n}M))_{n}$ and $(\text{ld}_{R}(M/I^{n}M))_{n}$ is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence $(\text{ld}_{R}C_{n})_{n}$ where $C$ is a finitely generated graded module over a standard graded algebra over $R$.


2019 ◽  
Vol 29 (02) ◽  
pp. 263-278
Author(s):  
Mesut Şahi̇n ◽  
Leah Gold Stella

We study strong indispensability of minimal free resolutions of semigroup rings focusing on the operation of gluing used in the literature to take examples with a special property and produce new ones. We give a naive condition to determine whether gluing of two semigroup rings has a strongly indispensable minimal free resolution. As applications, we determine simple gluings of [Formula: see text]-generated non-symmetric, [Formula: see text]-generated symmetric and pseudo symmetric numerical semigroups as well as obtain infinitely many new complete intersection semigroups of any embedding dimensions, having strongly indispensable minimal free resolutions.


Author(s):  
K. W. Gruenberg

AbstractFor a ZG-lattice A, the nth partial free Euler characteristic εn(A) is defined as the infimum of all where F* varies over all free resolutions of A. It is shown that there exists a stably free resolution E* of A which realises εn(A) for all n≥0 and that the function n → εn(A) is ultimately polynomial no residue classes. The existence of E* is established with the help of new invariants σn(A) of A. These are elements in certain image groups of the projective class group of ZG. When ZG allows cancellation, E* is a minimal free resolution and is essentially unique. When A is periodic, E* is ultimately periodic of period a multiple of the projective period of A.


1990 ◽  
Vol 118 ◽  
pp. 203-216 ◽  
Author(s):  
Mitsuyasu Hashimoto

Let R be a Noetherian commutative ring with, unit element, and Xij be variables with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let S = R[xij] be the polynomial ring over R, and It be the ideal in S, generated by the t × t minors of the generic matrix (xij) ∈ Mm, n(S). For many years there has been considerable interest in finding a minimal free resolution of S/It, over arbitrary base ring R. If we have a minimal free resolution P. over R = Z, the ring of integers, then R′ ⊗z P. is a resolution of S/It over the base ring R′.


2017 ◽  
Vol 69 (6) ◽  
pp. 1274-1291 ◽  
Author(s):  
Giuseppe Favacchio ◽  
Elena Guardo

AbstractA current research theme is to compare symbolic powers of an ideal I with the regular powers of I. In this paper, we focus on the case where I = IX is an ideal deûning an almost complete intersection (ACI) set of points X in ℙ1 × ℙ1. In particular, we describe a minimal free bigraded resolution of a non-arithmetically Cohen-Macaulay (also non-homogeneous) set 𝒵 of fat points whose support is an ACI, generalizing an earlier result of Cooper et al. for homogeneous sets of triple points. We call 𝒵 a fat ACI.We also show that its symbolic and ordinary powers are equal, i.e, .


Author(s):  
Courtney Gibbons ◽  
David Jorgensen ◽  
Janet Striuli

We introduce a new homological dimension for finitely generated modules over a commutative local ring R R , which is based on a complex derived from a free resolution L L of the residue field of R R , and called L L -dimension. We prove several properties of L L -dimension, give some applications, and compare L L -dimension to complete intersection dimension.


2015 ◽  
Vol 22 (01) ◽  
pp. 97-108 ◽  
Author(s):  
Paola Bonacini ◽  
Lucia Marino

Let X be a zero-dimensional scheme in ℙ1 × ℙ1. Then X has a minimal free resolution of length 2 if and only if X is ACM. In this paper we determine a class of reduced schemes whose resolutions, similarly to the ACM case, can be obtained by their Hilbert functions and depend only on their distributions of points in a grid of lines. Moreover, a minimal set of generators of the ideal of these schemes is given by curves split into the union of lines.


2017 ◽  
Vol 16 (01) ◽  
pp. 1750018 ◽  
Author(s):  
Rachelle R. Bouchat ◽  
Tricia Muldoon Brown

A path ideal of a tree is an ideal whose minimal generating set corresponds to paths of a specified length in a tree. We provide a description of a collection of induced subtrees whose vertex sets correspond to the multi-graded Betti numbers on the linear strand in the corresponding minimal free resolution of the path ideal. For two classes of path ideals, we give an explicit description of a collection of induced subforests whose vertex sets correspond to the multi-graded Betti numbers in the corresponding minimal free resolutions. Lastly, in both classes of path ideals considered, the graded Betti numbers are explicitly computed for [Formula: see text]-ary trees.


1990 ◽  
Vol 120 ◽  
pp. 129-153 ◽  
Author(s):  
Jürgen Herzog ◽  
Bernd Ulrich

Let S be a three-dimensional regular local ring and let I be a prime ideal in S of height two. This paper is motivated by the question of when I is a set-theoretic complete intersection and when the symbolic Rees algebra S(I) = ⊕n≥0I(n)tn is Noetherian. The connection between the two problems is given by a result of Cowsik which says that the Noetherian property of S(I) implies that I is a set-theoretic complete intersection ([1]).


Sign in / Sign up

Export Citation Format

Share Document