On homotopy nilpotency of the octonian plane $\mathbb{O}P^2$

2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Marek Golasi´nski

Let $\mathbb{O}P^2_{(p)}$ be the $p$-localization of the Cayley projective plane $\mathbb{O}P^2$ for a prime $p$ or $p=0$. We show that the homotopy nilpotency class $\textrm{nil} \Omega(\mathbb{O}P^2_{(p)})<\infty $ for $p>2$ and $\textrm{nil} \Omega (\mathbb{O}P^2_{(p)})=1$ for $p>5$ or $p=0$. The homotopy nilpotency of remaining Rosenfeld projective planes are discussed as well.

2019 ◽  
Vol 19 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Mustafa Gezek ◽  
Vladimir D. Tonchev ◽  
Tim Wagner

Abstract The resolutions and maximal sets of compatible resolutions of all 2-(120,8,1) designs arising from maximal (120,8)-arcs, and the 2-(52,4,1) designs arising from previously known maximal (52,4)-arcs, as well as some newly discovered maximal (52,4)-arcs in the known projective planes of order 16, are computed. It is shown that each 2-(120,8,1) design associated with a maximal (120,8)-arc is embeddable in a unique way in a projective plane of order 16. This result suggests a possible strengthening of the Bose–Shrikhande theorem about the embeddability of the complement of a hyperoval in a projective plane of even order. The computations of the maximal sets of compatible resolutions of the 2-(52,4,1) designs associated with maximal (52,4)-arcs show that five of the known projective planes of order 16 contain maximal arcs whose associated designs are embeddable in two nonisomorphic planes of order 16.


10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.


CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Vira Hari Krisnawati ◽  
Corina Karim

<p class="abstract"><span lang="IN">In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system <em>S</em>(<em>t</em>, <em>k</em>, <em>v</em>) is a set of <em>v</em> points and <em>k</em> blocks which satisfy that every <em>t</em>-subset of <em>v</em>-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with <em>t</em> = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order.</span></p><p class="abstract"><span lang="IN">In this paper, we observe some properties from construction of finite projective planes of order 2 and 3. Also, we analyse the intersection between two projective planes by using some characteristics of the construction and orbit of projective planes over some representative cosets from automorphism group in the appropriate symmetric group.</span></p>


1976 ◽  
Vol 41 (2) ◽  
pp. 391-404 ◽  
Author(s):  
J. C. E. Dekker

The main purpose of this paper is to show how partial recursive functions and isols can be used to generalize the following three well-known theorems of combinatorial theory.(I) For every finite projective plane Π there is a unique number n such that Π has exactly n2 + n + 1 points and exactly n2 + n + 1 lines.(II) Every finite projective plane of order n can be coordinatized by a finite planar ternary ring of order n. Conversely, every finite planar ternary ring of order n coordinatizes a finite projective plane of order n.(III) There exists a finite projective plane of order n if and only if there exist n − 1 mutually orthogonal Latin squares of order n.


1975 ◽  
Vol 27 (1) ◽  
pp. 32-36
Author(s):  
Frederick W. Stevenson

This paper introduces two relations both weaker than isotopism which may hold between planar ternary rings. We will concentrate on the geometric consequences rather than the algebraic properties of these relations. It is well-known that every projective plane can be coordinatized by a planar ternary ring and every planar ternary ring coordinatizes a projective plane. If two planar ternary rings are isomorphic then their associated projective planes are isomorphic; however, the converse is not true. In fact, an algebraic bond which necessarily holds between the coordinatizing planar ternary rings of isomorphic projective planes has not been found. Such a bond must, of course, be weaker than isomorphism; furthermore, it must be weaker than isotopism. Here we show that it is even weaker than the two new relations introduced.This is significant because the weaker of our relations is, in a sense, the weakest possible algebraic relation which can hold between planar ternary rings which coordinatize isomorphic projective planes.


1978 ◽  
Vol 25 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Richard J. Greechie

AbstractA construction is given for a non-desarguesian projective plane P and an absolute-point free polarity on P such that the group of collineations of P which commute with the polarity is isomorphic to an arbitrary preassigned finite group.


Author(s):  
Theocharis Theofanidis

Real hypersurfaces satisfying the conditionϕl=lϕ(l=R(·,ξ)ξ)have been studied by many authors under at least one more condition, since the class of these hypersurfaces is quite tough to be classified. The aim of the present paper is the classification of real hypersurfaces in complex projective planeCP2satisfying a generalization ofϕl=lϕunder an additional restriction on a specific function.


1957 ◽  
Vol 9 ◽  
pp. 378-388 ◽  
Author(s):  
D. R. Hughes

In (7), Veblen and Wedclerburn gave an example of a non-Desarguesian projective plane of order 9; we shall show that this plane is self-dual and can be characterized by a collineation group of order 78, somewhat like the planes associated with difference sets. Furthermore, the technique used in (7) will be generalized and we will construct a new non-Desarguesian plane of order p2n for every positive integer n and every odd prime p.


1971 ◽  
Vol 4 (2) ◽  
pp. 155-158 ◽  
Author(s):  
Don Row

We prove that a non-degenerate homomorphic image of a projective plane is determined to within isomorphism by the inverse image of any one point. An application gives conditions for the preservation of central collineations by a homomorphism.


1980 ◽  
Vol 88 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Peter Lorimer

AbstractIf a finite projective plane is of type (6, m), then m = 2 or 3.


Sign in / Sign up

Export Citation Format

Share Document