scholarly journals Resolving Sets and Semi-Resolving Sets in Finite Projective Planes

10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.

1970 ◽  
Vol 22 (4) ◽  
pp. 878-880 ◽  
Author(s):  
Judita Cofman

1. An involution of a projective plane π is a collineation X of π such that λ2 = 1. Involutions play an important röle in the theory of finite projective planes. According to Baer [2], an involution λ of a finite projective plane of order n is either a perspectivity, or it fixes a subplane of π of order in the last case, λ is called a Baer involution.While there are many facts known about collineation groups of finite projective planes containing perspectivities (see for instance [4; 5]), the investigation of Baer involutions seems rather difficult. The few results obtained about planes admitting Baer involutions are restricted only to special cases. Our aim in the present paper is to investigate finite projective planes admitting a large number of Baer involutions. It is known (see for instance [3, p. 401]) that in a finite Desarguesian projective plane of square order, the vertices of every quadrangle are fixed by exactly one Baer involution.


1992 ◽  
Vol 02 (04) ◽  
pp. 437-442
Author(s):  
RUTH SILVERMAN ◽  
ALAN H. STEIN

A family of sets is said to have property B(s) if there is a set, referred to as a blocking set, whose intersection with each member of the family is a proper subset of that blocking set and contains fewer than s elements. A finite projective plane is a construction satisfying the two conditions that any two lines meet in a unique point and any two points are on a unique line. In this paper, the authors develop an algorithm of complexity O(n3) for constructing a blocking set for a projective plane of order n.


10.37236/7810 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Anurag Bishnoi ◽  
Sam Mattheus ◽  
Jeroen Schillewaert

We prove that a minimal $t$-fold blocking set in a finite projective plane of order $n$ has cardinality at most \[\frac{1}{2} n\sqrt{4tn - (3t + 1)(t - 1)} + \frac{1}{2} (t - 1)n + t.\] This is the first general upper bound on the size of minimal $t$-fold blocking sets in finite projective planes and it generalizes the classical result of Bruen and Thas on minimal blocking sets. From the proof it directly follows that if equality occurs in this bound then every line intersects the blocking set $S$ in either $t$ points or $\frac{1}{2}(\sqrt{4tn  - (3t + 1)(t - 1)}  + t - 1) + 1$ points. We use this to show that for $n$ a prime power, equality can occur in our bound in exactly one of the following three cases: (a) $t = 1$, $n$ is a square and $S$ is a unital; (b) $t = n - \sqrt{n}$, $n$ is a square and $S$ is the complement of a Baer subplane; (c) $t = n$ and $S$ is equal to the set of all points except one. For a square prime power $q$ and $t \leq \sqrt{q} + 1$, we give a construction of a minimal $t$-fold blocking set $S$ in $\mathrm{PG}(2,q)$ with $|S| = q\sqrt{q} + 1 + (t - 1)(q - \sqrt{q} + 1)$. Furthermore, we obtain an upper bound on the size of minimal blocking sets in symmetric $2$-designs and use it to give new proofs of other known results regarding tangency sets in higher dimensional finite projective spaces. We also discuss further generalizations of our bound. In our proofs we use an incidence bound on combinatorial designs which follows from applying the expander mixing lemma to the incidence graph of these designs.


CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Vira Hari Krisnawati ◽  
Corina Karim

<p class="abstract"><span lang="IN">In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system <em>S</em>(<em>t</em>, <em>k</em>, <em>v</em>) is a set of <em>v</em> points and <em>k</em> blocks which satisfy that every <em>t</em>-subset of <em>v</em>-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with <em>t</em> = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order.</span></p><p class="abstract"><span lang="IN">In this paper, we observe some properties from construction of finite projective planes of order 2 and 3. Also, we analyse the intersection between two projective planes by using some characteristics of the construction and orbit of projective planes over some representative cosets from automorphism group in the appropriate symmetric group.</span></p>


1976 ◽  
Vol 41 (2) ◽  
pp. 391-404 ◽  
Author(s):  
J. C. E. Dekker

The main purpose of this paper is to show how partial recursive functions and isols can be used to generalize the following three well-known theorems of combinatorial theory.(I) For every finite projective plane Π there is a unique number n such that Π has exactly n2 + n + 1 points and exactly n2 + n + 1 lines.(II) Every finite projective plane of order n can be coordinatized by a finite planar ternary ring of order n. Conversely, every finite planar ternary ring of order n coordinatizes a finite projective plane of order n.(III) There exists a finite projective plane of order n if and only if there exist n − 1 mutually orthogonal Latin squares of order n.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Ashfaq Ahmad ◽  
Maqbool Chaudhary ◽  
Junaid Alam Khan ◽  
...  

AbstractResolving set and metric basis has become an integral part in combinatorial chemistry and molecular topology. It has a lot of applications in computer, chemistry, pharmacy and mathematical disciplines. A subset S of the vertex set V of a connected graph G resolves G if all vertices of G have different representations with respect to S. A metric basis for G is a resolving set having minimum cardinal number and this cardinal number is called the metric dimension of G. In present work, we find a metric basis and also metric dimension of 1-pentagonal carbon nanocones. We conclude that only three vertices are minimal requirement for the unique identification of all vertices in this network.


Author(s):  
Eunjeong Yi

Let [Formula: see text] be a graph with vertex set [Formula: see text], and let [Formula: see text] denote the length of a shortest [Formula: see text] path in [Formula: see text]. A set [Formula: see text] is called a connected resolving set of [Formula: see text] if, for any distinct [Formula: see text], there exists a vertex [Formula: see text] such that [Formula: see text], and the subgraph of [Formula: see text] induced by [Formula: see text] is connected. The connected metric dimension, [Formula: see text], of [Formula: see text] is the minimum of the cardinalities over all connected resolving sets of [Formula: see text]. For a graph [Formula: see text] and its complement [Formula: see text], each of order [Formula: see text] and connected, we conjecture that [Formula: see text]; if [Formula: see text] is a tree or a unicyclic graph, we prove the conjecture and characterize graphs achieving equality.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 191 ◽  
Author(s):  
Shahid Imran ◽  
Muhammad Siddiqui ◽  
Muhammad Imran ◽  
Muhammad Hussain

Let G = (V, E) be a connected graph and d(x, y) be the distance between the vertices x and y in G. A set of vertices W resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G and is denoted by dim(G). In this paper, Cycle, Path, Harary graphs and their rooted product as well as their connectivity are studied and their metric dimension is calculated. It is proven that metric dimension of some graphs is unbounded while the other graphs are constant, having three or four dimensions in certain cases.


1978 ◽  
Vol 25 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Richard J. Greechie

AbstractA construction is given for a non-desarguesian projective plane P and an absolute-point free polarity on P such that the group of collineations of P which commute with the polarity is isomorphic to an arbitrary preassigned finite group.


1957 ◽  
Vol 9 ◽  
pp. 378-388 ◽  
Author(s):  
D. R. Hughes

In (7), Veblen and Wedclerburn gave an example of a non-Desarguesian projective plane of order 9; we shall show that this plane is self-dual and can be characterized by a collineation group of order 78, somewhat like the planes associated with difference sets. Furthermore, the technique used in (7) will be generalized and we will construct a new non-Desarguesian plane of order p2n for every positive integer n and every odd prime p.


Sign in / Sign up

Export Citation Format

Share Document