scholarly journals Edge ideals of clique clutters of comparability graphs and the normality of monomial ideals

2010 ◽  
Vol 106 (1) ◽  
pp. 88 ◽  
Author(s):  
Luis A. Dupont ◽  
Rafael H. Villarreal

The normality of a monomial ideal is expressed in terms of lattice points of blocking polyhedra and the integer decomposition property. For edge ideals of clutters this property characterizes normality. Let $G$ be the comparability graph of a finite poset. If $\mathrm{cl}(G)$ is the clutter of maximal cliques of $G$, we prove that $\mathrm{cl}(G)$ satisfies the max-flow min-cut property and that its edge ideal is normally torsion free. Then we prove that edge ideals of complete admissible uniform clutters are normally torsion free.

2012 ◽  
Vol 49 (4) ◽  
pp. 501-508 ◽  
Author(s):  
Muhammad Ishaq ◽  
Muhammad Qureshi

We give an upper bound for the Stanley depth of the edge ideal I of a k-partite complete graph and show that Stanley’s conjecture holds for I. Also we give an upper bound for the Stanley depth of the edge ideal of a s-uniform complete bipartite hypergraph.


2019 ◽  
Vol 18 (10) ◽  
pp. 1950184 ◽  
Author(s):  
Mike Janssen ◽  
Thomas Kamp ◽  
Jason Vander Woude

Given a nontrivial homogeneous ideal [Formula: see text], a problem of great recent interest has been the comparison of the [Formula: see text]th ordinary power of [Formula: see text] and the [Formula: see text]th symbolic power [Formula: see text]. This comparison has been undertaken directly via an exploration of which exponents [Formula: see text] and [Formula: see text] guarantee the subset containment [Formula: see text] and asymptotically via a computation of the resurgence [Formula: see text], a number for which any [Formula: see text] guarantees [Formula: see text]. Recently, a third quantity, the symbolic defect, was introduced; as [Formula: see text], the symbolic defect is the minimal number of generators required to add to [Formula: see text] in order to get [Formula: see text]. We consider these various means of comparison when [Formula: see text] is the edge ideal of certain graphs by describing an ideal [Formula: see text] for which [Formula: see text]. When [Formula: see text] is the edge ideal of an odd cycle, our description of the structure of [Formula: see text] yields solutions to both the direct and asymptotic containment questions, as well as a partial computation of the sequence of symbolic defects.


2016 ◽  
Vol 20 (3) ◽  
pp. 601-607 ◽  
Author(s):  
Takayuki Hibi ◽  
Akihiro Higashitani

2019 ◽  
Vol 30 (01) ◽  
pp. 125-139
Author(s):  
Do Trong Hoang

We prove that [Formula: see text] for any staircase skew Ferrers graph [Formula: see text], where [Formula: see text] and [Formula: see text]. As a consequence, Ene et al. conjecture is confirmed to hold true for the Betti numbers in the last column of the Betti table in a particular case. An explicit formula for the unique extremal Betti number of the binomial edge ideal of some closed graphs is also given.


2020 ◽  
pp. 1-13
Author(s):  
S. A. SEYED FAKHARI

Abstract Assume that G is a graph with edge ideal $I(G)$ and star packing number $\alpha _2(G)$ . We denote the sth symbolic power of $I(G)$ by $I(G)^{(s)}$ . It is shown that the inequality $ \operatorname {\mathrm {depth}} S/(I(G)^{(s)})\geq \alpha _2(G)-s+1$ is true for every chordal graph G and every integer $s\geq 1$ . Moreover, it is proved that for any graph G, we have $ \operatorname {\mathrm {depth}} S/(I(G)^{(2)})\geq \alpha _2(G)-1$ .


2011 ◽  
Vol 204 ◽  
pp. 57-68 ◽  
Author(s):  
Viviana Ene ◽  
Jürgen Herzog ◽  
Takayuki Hibi
Keyword(s):  

AbstractWe study the depth of classes of binomial edge ideals and classify all closed graphs whose binomial edge ideal is Cohen-Macaulay.


2019 ◽  
Vol 19 (10) ◽  
pp. 2050184
Author(s):  
Bidwan Chakraborty ◽  
Mousumi Mandal

Let [Formula: see text] be a graph and [Formula: see text] be its edge ideal. When [Formula: see text] is the clique sum of two different length odd cycles joined at single vertex then we give an explicit description of the symbolic powers of [Formula: see text] and compute the Waldschmidt constant. When [Formula: see text] is complete graph then we describe the generators of the symbolic powers of [Formula: see text] and compute the Waldschmidt constant and the resurgence of [Formula: see text]. Moreover for complete graph we prove that the Castelnuovo–Mumford regularity of the symbolic powers and ordinary powers of the edge ideal coincide.


2011 ◽  
Vol 204 ◽  
pp. 57-68 ◽  
Author(s):  
Viviana Ene ◽  
Jürgen Herzog ◽  
Takayuki Hibi
Keyword(s):  

AbstractWe study the depth of classes of binomial edge ideals and classify all closed graphs whose binomial edge ideal is Cohen-Macaulay.


2016 ◽  
Vol 24 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Faryal Chaudhry ◽  
Ahmet Dokuyucu ◽  
Rida Irfan

Abstract We find a class of block graphs whose binomial edge ideals have minimal regularity. As a consequence, we characterize the trees whose binomial edge ideals have minimal regularity. Also, we show that the binomial edge ideal of a block graph has the same depth as its initial ideal.


Sign in / Sign up

Export Citation Format

Share Document