A note on holomorphic functions and the Fourier-Laplace transform

2017 ◽  
Vol 120 (2) ◽  
pp. 225 ◽  
Author(s):  
Marcus Carlsson ◽  
Jens Wittsten

We revisit the classical problem of when a given function, which is analytic in the upper half plane $\mathbb{C} _+$, can be written as the Fourier transform of a function or distribution with support on a half axis $(-\infty ,b]$, $b\in \mathbb{R} $. We derive slight improvements of the classical Paley-Wiener-Schwartz Theorem, as well as softer conditions for verifying membership in classical function spaces such as $H^p(\mathbb{C} _+)$.

Author(s):  
Michael J Corinthios

In this paper, the author uses his recently proposed complex variable generalized distribution theory to expand the domains of existence of bilateral Laplace and z transforms, as well as a whole new class of related transforms. A vast expansion of the domains of existence of bilateral Laplace and z transforms and continuous-time and discrete-time Hilbert, Hartley and Mellin transforms, as well as transforms of multidimensional functions and sequences are obtained. It is noted that the Fourier transform and its applications have advanced by leaps and bounds during the last century, thanks to the introduction of the theory of distributions and, in particular, the concept of the Dirac-delta impulse. Meanwhile, however, the truly two-sided ‘bilateral’ Laplace and z transforms, which are more general than Fourier, remained at a standstill incapable of transforming the most basic of functions. In fact, they were reduced by half to one-sided transforms and received no more than a passing reference in the literature. It is shown that the newly proposed generalized distributions expand the domains of existence and application of Laplace and z transforms similar to and even more extensively than the expansion of the domain of Fourier transform that resulted from the introduction, nearly a century ago, of the theory of distributions and the Dirac-delta impulse. It is also shown that the new generalized distributions put an end to an anomaly that still exists today, which meant that for a large class of basic functions, the Fourier transform exists while the more general Laplace and z transforms do not. The anomaly further manifests itself in the fact that even for the one-sided causal functions, such as the Heaviside unit step function u ( t ) and the sinusoid sin βtu ( t ), the Laplace transform does not exist on the j ω -axis, and the Fourier transform which does exist cannot be deduced thereof by the substitution s =j ω in the Laplace transform, which by definition it should. The extended generalized transforms are well defined for a large class of functions ranging from the most basic to highly complex fast-rising exponential ones that have so far had no transform. Among basic applications, the solution of partial differential equations using the extended generalized transforms is provided. This paper clearly presents and articulates the significant impact of extending the domains of Laplace and z transforms on a large family of related transforms, after nearly a century during which bilateral Laplace and z transforms of even the most basic of functions were undefined, and the domains of definition of related transforms such as Hilbert, Hartley and Mellin transforms were confined to a fraction of the space they can now occupy.


1989 ◽  
Vol 56 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Chau-Shioung Yeh

The induced magnetic fields generated by a line mechanical singularity in a magnetized elastic half plane are investigated in this paper. One version of linear theory for soft ferromagnetic elastic solids which has been developed by Pao and Yeh (1973) is adopted to analyze the plane strain problem undertaken. By applying the Fourier transform technique, the exact solutions for the generated magnetic inductions due to various mechanical singularities such as a single force, a dipole, and single couple are obtained in a closed form. The distributions of the generated inductions on the surface are shown with figures.


2018 ◽  
Vol 122 (1) ◽  
pp. 141
Author(s):  
Wolfgang Lusky

We consider moderately growing weight functions $v$ on the upper half plane $\mathbb G$ called normal weights which include the examples $(\mathrm{Im} w)^a$, $w \in \mathbb G$, for fixed $a > 0$. In contrast to the comparable, well-studied situation of normal weights on the unit disc here there are always unbounded composition operators $C_{\varphi }$ on the weighted spaces $Hv(\mathbb G)$. We characterize those holomorphic functions $\varphi \colon \mathbb G \rightarrow \mathbb G$ where the composition operator $C_{\varphi } $ is a bounded operator $Hv(\mathbb G) \rightarrow Hv(\mathbb G)$ by a simple property which depends only on $\varphi $ but not on $v$. Moreover we show that there are no compact composition operators $C_{\varphi }$ on $Hv(\mathbb G)$.


Geophysics ◽  
1985 ◽  
Vol 50 (4) ◽  
pp. 685-691 ◽  
Author(s):  
J. C. Mareschal

A relationship is derived between the Fourier transform of a potential field at the Earth’s surface and the transform of the inducing source distribution. The Fourier transform of the field is the Laplace transform of the source distribution spectrum when the Laplace transform variable p is equal to the wavenumber. This relationship can be used to determine all possible source distributions compatible with the data. The solution is the superposition of a particular solution to an inhomogeneous problem and of the general solution to the homogeneous problem (i.e., for which the field vanishes at the surface). Source distribution can be expanded into a set of known functions; coefficients of the expansion are determined by solving a system of linear equations. Physical constraints can be introduced to restrict the variation range of the coefficients of expansion. Two examples are presented to illustrate the method: a synthetic gravity profile and a heat flow profile are inverted to determine density or heat source distributions compatible with the data.


2020 ◽  
Vol 4 (2) ◽  
pp. 43
Author(s):  
Jacob Aboudi

An analysis for the prediction of the electromechanical field in composite piezoelectric half-planes with attached surface electrode is presented. The composite half-planes are composed of distinct constituents and may include internal defects in various locations. The solution is carried out in a sufficiently large rectangular region, the boundary conditions of which are obtained from the corresponding solution of a homogeneous piezoelectric half-plane. This is followed by the application of the discrete Fourier transform at the domain of which a boundary-value problem is formulated. The solution of this boundary-value problem, followed by the inversion of the Fourier transform, provides, in conjunction with an iterative procedure, the electromechanical field at any point of the rectangular region. Applications are given for a piezoelectric half-plane with defects in the form of a cavity and of short and semi-infinite cracks as well as of a periodically bilayered composite with a crack in one of its layers.


2002 ◽  
Vol 66 (2) ◽  
pp. 301-311 ◽  
Author(s):  
Min Ho Lee

Jacobi-like forms are certain formal power series which generalise Jacobi forms in some sense, and they are closely linked to modular forms when their coefficients are holomorphic functions on the Poincaré upper half plane. We construct two types of vector bundles whose fibres are isomorphic to the space of certain formal power series and whose sections can be identified with Jacobi-like forms for a discrete subgroup of SL (2,ℝ).


Sign in / Sign up

Export Citation Format

Share Document