scholarly journals Established Population of Blacklegged Ticks with High Infection Prevalence for the Lyme Disease Bacterium, Borrelia burgdorferi Sensu Lato, on Corkscrew Island, Kenora District, Ontario

2016 ◽  
Vol 13 (11) ◽  
pp. 881-891 ◽  
Author(s):  
John D. Scott ◽  
Janet E. Foley ◽  
Kerry L. Clark ◽  
John F. Anderson ◽  
Lance A. Durden ◽  
...  
Author(s):  
Matthew T Milholland ◽  
Lars Eisen ◽  
Robyn M Nadolny ◽  
Andrias Hojgaard ◽  
Erika T Machtinger ◽  
...  

Abstract Lyme and other tick-borne diseases are increasing in the eastern United States and there is a lack of research on integrated strategies to control tick vectors. Here we present results of a study on tick-borne pathogens detected from tick vectors and rodent reservoirs from an ongoing 5-yr tick suppression study in the Lyme disease-endemic state of Maryland, where human-biting tick species, including Ixodes scapularis Say (Acari: Ixodidae) (the primary vector of Lyme disease spirochetes), are abundant. During the 2017 tick season, we collected 207 questing ticks and 602 ticks recovered from 327 mice (Peromyscus spp. (Rodentia: Cricetidae)), together with blood and ear tissue from the mice, at seven suburban parks in Howard County. Ticks were selectively tested for the presence of the causative agents of Lyme disease (Borrelia burgdorferi sensu lato [s.l.]), anaplasmosis (Anaplasma phagocytophilum), babesiosis (Babesia microti), ehrlichiosis (Ehrlichia ewingii, Ehrlichia chaffeensis, and ‘Panola Mountain’ Ehrlichia) and spotted fever group rickettsiosis (Rickettsia spp.). Peromyscus ear tissue and blood samples were tested for Bo. burgdorferi sensu stricto (s.s), A. phagocytophilum, Ba. microti, and Borrelia miyamotoi. We found 13.6% (15/110) of questing I. scapularis nymphs to be Bo. burgdorferi s.l. positive and 1.8% (2/110) were A. phagocytophilum positive among all sites. Borrelia burgdorferi s.s. was found in 71.1% (54/76) of I. scapularis nymphs removed from mice and 58.8% (194/330) of captured mice. Results from study on tick abundance and pathogen infection status in questing ticks, rodent reservoirs, and ticks feeding on Peromyscus spp. will aid efficacy evaluation of the integrated tick management measures being implemented.


Parasitology ◽  
2016 ◽  
Vol 143 (10) ◽  
pp. 1310-1319 ◽  
Author(s):  
SANNE C. RUYTS ◽  
EVY AMPOORTER ◽  
ELENA C. COIPAN ◽  
LANDER BAETEN ◽  
DIETER HEYLEN ◽  
...  

SUMMARYLyme disease is caused by bacteria of theBorrelia burgdorferigenospecies complex and transmitted by Ixodid ticks. In North America only one pathogenic genospecies occurs, in Europe there are several. According to the dilution effect hypothesis (DEH), formulated in North America, nymphal infection prevalence (NIP) decreases with increasing host diversity since host species differ in transmission potential. We analysedBorreliainfection in nymphs from 94 forest stands in Belgium, which are part of a diversification gradient with a supposedly related increasing host diversity: from pine stands without to oak stands with a shrub layer. We expected changing tree species and forest structure to increase host diversity and decrease NIP. In contrast with the DEH, NIP did not differ between different forest types. Genospecies diversity however, and presumably also host diversity, was higher in oak than in pine stands. Infected nymphs tended to harbourBorrelia afzeliiinfection more often in pine stands whileBorrelia gariniiandBorrelia burgdorferiss. infection appeared to be more prevalent in oak stands. This has important health consequences, since the latter two cause more severe disease manifestations. We show that the DEH must be nuanced for Europe and should consider the response of multiple pathogenic genospecies.


Healthcare ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 59 ◽  
Author(s):  
John D. Scott ◽  
Emily L. Pascoe ◽  
Muhammad S. Sajid ◽  
Janet E. Foley

This study provides a novel method of documenting established populations of bird-feeding ticks. Single populations of the blacklegged tick, Ixodes scapularis, and the rabbit tick, Haemaphysalis leporispalustris, were revealed in southwestern Québec, Canada. Blacklegged tick nymphs and, similarly, larval and nymphal rabbit ticks were tested for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (Bbsl), using PCR and the flagellin (flaB) gene, and 14 (42%) of 33 of blacklegged tick nymphs tested were positive. In contrast, larval and nymphal H. leporsipalustris ticks were negative for Bbsl. The occurrence of Bbsl in I. scapularis nymphs brings to light the presence of a Lyme disease endemic area at this songbird nesting locality. Because our findings denote that this area is a Lyme disease endemic area, and I. scapularis is a human-biting tick, local residents and outdoor workers must take preventive measures to avoid tick bites. Furthermore, local healthcare practitioners must include Lyme disease in their differential diagnosis.


Healthcare ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 89 ◽  
Author(s):  
John Scott ◽  
Kerry Clark ◽  
Janet Foley ◽  
Bradley Bierman ◽  
Lance Durden

Lyme disease has been documented in northern areas of Canada, but the source of the etiological bacterium, Borrelia burgdorferi sensu lato (Bbsl) has been in doubt. We collected 87 ticks from 44 songbirds during 2017, and 24 (39%) of 62 nymphs of the blacklegged tick, Ixodes scapularis, were positive for Bbsl. We provide the first report of Bbsl-infected, songbird-transported I. scapularis in Cape Breton, Nova Scotia; Newfoundland and Labrador; north-central Manitoba, and Alberta. Notably, we report the northernmost account of Bbsl-infected ticks parasitizing a bird in Canada. DNA extraction, PCR amplification, and DNA sequencing reveal that these Bbsl amplicons belong to Borrelia burgdorferi sensu stricto (Bbss), which is pathogenic to humans. Based on our findings, health-care providers should be aware that migratory songbirds widely disperse B. burgdorferi-infected I. scapularis in Canada’s North, and local residents do not have to visit an endemic area to contract Lyme disease.


Healthcare ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 155 ◽  
Author(s):  
John D. Scott ◽  
Kerry L. Clark ◽  
Nikki M. Coble ◽  
Taylor R. Ballantyne

Lyme disease and human babesiosis are the most common tick-borne zoonoses in the Temperate Zone of North America. The number of infected patients has continued to rise globally, and these zoonoses pose a major healthcare threat. This tick-host-pathogen study was conducted to test for infectious microbes associated with Lyme disease and human babesiosis in Canada. Using the flagellin (flaB) gene, three members of the Borrelia burgdorferi sensu lato (Bbsl) complex were detected, namely a Borrelia lanei-like spirochete, Borrelia burgdorferi sensu stricto (Bbss), and a distinct strain that may represent a separate Bbsl genospecies. This novel Bbsl strain was detected in a mouse tick, Ixodes muris, collected from a House Wren, Troglodytes aedon, in Quebec during the southward fall migration. The presence of Bbsl in bird-feeding larvae of I. muris suggests reservoir competency in three passerines (i.e., Common Yellowthroat, House Wren, Magnolia Warbler). Based on the 18S ribosomal RNA (rRNA) gene, three Babesia species (i.e., Babesia divergens-like, Babesia microti, Babesia odocoilei) were detected in field-collected ticks. Not only was B. odocoilei found in songbird-derived ticks, this piroplasm was apparent in adult questing blacklegged ticks, Ixodes scapularis, in southern Canada. By allowing live, engorged ticks to molt, we confirm the transstadial passage of Bbsl in I. muris and B. odocoilei in I. scapularis. Bbss and Babesia microti were detected concurrently in a groundhog tick, Ixodes cookei, in Western Ontario. In Alberta, a winter tick, Dermacentor albipictus, which was collected from a moose, Alces alces, tested positive for Bbss. Notably, a B. divergens-like piroplasm was detected in a rabbit tick, Haemaphysalis leporispalustris, collected from an eastern cottontail in southern Manitoba; this Babesia species is a first-time discovery in Canada. This rabbit tick was also co-infected with Borrelia lanei-like spirochetes, which constitutes a first in Canada. Overall, five ticks were concurrently infected with Babesia and Bbsl pathogens and, after the molt, could potentially co-infect humans. Notably, we provide the first authentic report of I. scapularis ticks co-infected with Bbsl and B. odocoilei in Canada. The full extent of infectious microorganisms transmitted to humans by ticks is not fully elucidated, and clinicians need to be aware of the complexity of these tick-transmitted enzootic agents on human health. Diagnosis and treatment must be administered by those with accredited medical training in tick-borne zoonosis.


1998 ◽  
Vol 36 (11) ◽  
pp. 3127-3132 ◽  
Author(s):  
Chien-Ming Shih ◽  
Han-Ming Chang ◽  
Show-Li Chen ◽  
Li-Lian Chao

Lyme disease spirochetes of the genospecies Borrelia burgdorferi sensu lato were identified and characterized for the first time in Taiwan. Seven isolates, designated TWKM1 to TWKM7, were purified from the ear tissues of three species of rodents captured from seven localities of Taiwan. The immunological characteristics of these Taiwan isolates were compared with those of other genospecies of Lyme disease spirochetes by analyzing the protein profiles and reactivities with B. burgdorferi-specific monoclonal antibodies (MAbs). The genospecies of these Taiwan isolates were also identified by the similarities in their plasmid profiles and differential reactivities with genospecies-specific PCR primers. Although two distinct protein profiles were observed among the seven Taiwan isolates, the MAb reactivities against the outer surface proteins of B. burgdorferi of all of these isolates were consistent with those of B. burgdorferi sensu lato. The similarities of the plasmid profiles also confirmed the identities of these Taiwan isolates. PCR analysis indicated that all of these Taiwan isolates were genetically related to the genospecies B. burgdorferi sensu stricto. These results demonstrate the first identification of Lyme disease spirochetes in Taiwan and also highlight the increasing demand for defining the reservoirs and vector ticks of B. burgdorferi. A serosurvey for Lyme disease infection in the human population of Taiwan may also be required.


1998 ◽  
Vol 66 (10) ◽  
pp. 4656-4668 ◽  
Author(s):  
Shian-Ying Sung ◽  
Crystal P. Lavoie ◽  
Jason A. Carlyon ◽  
Richard T. Marconi

ABSTRACT A series of related genes that are flanked at their 5′ ends by a conserved upstream sequence element called the upstream homology box (UHB) have been identified in Borrelia burgdorferi. These genes have been referred to as the UHB or erp gene family. We previously demonstrated that among a limited number of B. burgdorferi isolates, the UHB gene family is variable in composition and organization. Prior to this report the UHB gene family in other species of the B. burgdorferi sensu lato complex had not been studied, and if this family is important in the pathogenesis or biology of the Lyme disease spirochetes, then a wide distribution among species and isolates of the B. burgdorferi sensu lato complex would be expected. To assess this, we screened for the UHB element by Southern hybridization and determined its restriction fragment length polymorphism (RFLP) patterns. The UHB element was found to be carried by all B. burgdorferi sensu lato complex species tested (B. burgdorferi, B. garinii, B. afzelii,B. japonica, B. valaisiana sp. nov., andB. andersonii), but the RFLP patterns varied widely at both the inter- and intraspecies levels. Variation in both the number and size of the hybridizing restriction fragments was evident. PCR analyses also revealed the presence of polymorphic, ospE-related alleles in many isolates. Sequence analyses identified the molecular basis of the polymorphisms as being primarily insertions and deletions. Sequence variation and the insertions and deletions were found to be clustered in two distinct domains (variable domains 1 and 2). In many isolates variable domain 1 is flanked by direct repeat elements, some as long as 38 bp. Computer analyses of the deduced amino acid sequences encoded within variable domain 1 predict them to be hydrophilic, surface exposed, and antigenic. The analyses conducted here suggest that the UHB gene family, as evidenced by the variable UHB RFLP patterns, is not evolutionarily stable and that the polymorphicospE alleles are derived from a common ancestral gene which has been modified through mutation or recombination events. The characterization of ospE-related genes of the UHB gene family among B. burgdorferi sensu lato species will prove important in attempts to construct a model for UHB gene family organization and in deciphering the role of the UHB gene family in the biology and pathogenesis of the Lyme disease spirochetes.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 866
Author(s):  
Seong Yoon Kim ◽  
Tae-Kyu Kim ◽  
Tae Yun Kim ◽  
Hee Il Lee

Lyme disease is a tick-borne zoonotic disease caused by Borrelia burgdorferi sensu lato (s. l.) via transmission cycles involving competent tick vectors and vertebrate reservoirs. Here, we determined the prevalence and distribution of Borrelia genospecies in 738 ticks of at least three species from wild rodents in nine regions of the Republic of Korea (ROK). Ticks were analyzed using nested PCR targeting partial flagellin B gene sequences, followed by sequence analysis. The prevalence of Borrelia infection was 33.6%, and the most common genospecies were B. afzelii (62.5%), B. valaisiana (31.9%), B. yangtzensis (2.4%), B. garinii (1.6%), and B. tanukii (1.6%). Borrelia afzelii was found in all regions except Jeju Island; this predominant genospecies was found in the northern and central sampling regions. Borrelia valaisiana, B. yangtzensis, and B. tanukii were found only in the southern regions with B. valaisiana being the most common, whereas B. yangtzensis and B. tanukii were only found on Jeju Island. Our study is the first to describe the nationwide prevalence of B. burgdorferi s. l. in ticks from wild rodents in the ROK. Continuous surveillance in ticks, animals, humans, and different regions is required to avoid disease distribution and possible transmission to humans in the ROK.


Sign in / Sign up

Export Citation Format

Share Document