scholarly journals Fair total domination number in cactus graphs

2021 ◽  
Vol 41 (2) ◽  
pp. 647
Author(s):  
Majid Hajian ◽  
Nader Jafari Rad
Author(s):  
Jonecis Dayap ◽  
Nasrin Dehgardi ◽  
Leila Asgharsharghi ◽  
Seyed Mahmoud Sheikholeslami

For any integer [Formula: see text], a minus total [Formula: see text]-dominating function is a function [Formula: see text] satisfying [Formula: see text] for every [Formula: see text], where [Formula: see text]. The minimum of the values of [Formula: see text], taken over all minus total [Formula: see text]-dominating functions [Formula: see text], is called the minus total [Formula: see text]-domination number and is denoted by [Formula: see text]. In this paper, we initiate the study of minus total [Formula: see text]-domination in graphs, and we present different sharp bounds on [Formula: see text]. In addition, we determine the minus total [Formula: see text]-domination number of some classes of graphs. Some of our results are extensions of known properties of the minus total domination number [Formula: see text].


2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


Author(s):  
A. Cabrera-Martínez ◽  
F. A. Hernández-Mira

AbstractLet G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to be a double total dominating set of G if $$|N(v)\cap D|\ge 2$$ | N ( v ) ∩ D | ≥ 2 for every vertex $$v\in V(G)$$ v ∈ V ( G ) . The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050129
Author(s):  
Karnchana Charoensitthichai ◽  
Chalermpong Worawannotai

The total domination game is played on a graph [Formula: see text] by two players, named Dominator and Staller. They alternately select vertices of [Formula: see text]; each chosen vertex totally dominates its neighbors. In this game, each chosen vertex must totally dominates at least one new vertex not totally dominated before. The game ends when all vertices in [Formula: see text] are totally dominated. Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is to prolong it as much as possible. The game total domination number is the number of chosen vertices when both players play optimally, denoted by [Formula: see text] when Dominator starts the game and denoted by [Formula: see text] when Staller starts the game. In this paper, we show that for any graph [Formula: see text] and a vertex [Formula: see text], where [Formula: see text] has no isolated vertex, we have [Formula: see text] and [Formula: see text]. Moreover, all such differences can be realized by some connected graphs.


2017 ◽  
Vol 9 (5/6) ◽  
pp. 541
Author(s):  
Valentina E. Balas ◽  
V. Yegnanarayanan ◽  
A. Renuka Lakshmi

Sign in / Sign up

Export Citation Format

Share Document