scholarly journals Sharp error bounds for turning point expansions

2021 ◽  
pp. 49-81
Author(s):  
T. M. Dunster ◽  
A. Gil ◽  
J. Segura
2020 ◽  
pp. 1-32
Author(s):  
T. M. Dunster ◽  
A. Gil ◽  
J. Segura

Recently, the present authors derived new asymptotic expansions for linear differential equations having a simple turning point. These involve Airy functions and slowly varying coefficient functions, and were simpler than previous approximations, in particular being computable to a high degree of accuracy. Here we present explicit error bounds for these expansions which only involve elementary functions, and thereby provide a simplification of the bounds associated with the classical expansions of Olver.


2019 ◽  
Vol 150 (3) ◽  
pp. 1289-1311 ◽  
Author(s):  
T. M. Dunster

AbstractLinear second order differential equations of the form d2w/dz2 − {u2f(u, z) + g(z)}w = 0 are studied, where |u| → ∞ and z lies in a complex bounded or unbounded domain D. If f(u, z) and g(z) are meromorphic in D, and f(u, z) has no zeros, the classical Liouville-Green/WKBJ approximation provides asymptotic expansions involving the exponential function. The coefficients in these expansions either multiply the exponential or in an alternative form appear in the exponent. The latter case has applications to the simplification of turning point expansions as well as certain quantum mechanics problems, and new computable error bounds are derived. It is shown how these bounds can be sharpened to provide realistic error estimates, and this is illustrated by an application to modified Bessel functions of complex argument and large positive order. Explicit computable error bounds are also derived for asymptotic expansions for particular solutions of the nonhomogeneous equations of the form d2w/dz2 − {u2f(z) + g(z)}w = p(z).


2004 ◽  
Vol 20 (5) ◽  
pp. 669-698 ◽  
Author(s):  
Marek Kwas ◽  
Henryk Woźniakowski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document