Studying the Effects of Distributed Generation on Voltage Regulation

2009 ◽  
Vol 46 (1) ◽  
pp. 11-29 ◽  
Author(s):  
C. P. Lawrence ◽  
M. M. A. Salama ◽  
R. El Shatshat
Author(s):  
Vanka Bala Murali Krishna ◽  
Sandeep Vuddanti

Abstract Research on Self –excited induction generator (SEIG) brings a lot of attentions in the last three decades as a promising solution in distributed generation systems with low cost investment. There are two important fixations to attend in the operation of SEIG based systems, a) excitation and b) voltage regulation. Many procedures are reported regarding selection of excitation capacitance in the literature, based on state-state analysis, dynamic modeling, empirical formulas and machine parameters which involve various levels of complexity in findings. Moreover, the voltage regulation is the main challenge in implementation of SEIG based isolated systems. To address this problem, many power electronic-based schemes are proposed in the literature and but these solutions have few demerits importantly that additional cost of equipment and troubles due to failure of protection schemes. In particular, the installation of SEIG takes place at small scale in kW range in remote/rural communities which should not face such shortcomings. Further in case of off-grid systems, the maximum loading is fixed based on connected rating of the generator. This paper presents the various methods to find excitation capacitance and illustrates an experimental investigation on different possible reactive power compensation methods of delta connected SEIG and aimed to identify a simple method for terminal voltage control without power electronics. In this experimental work, the prime-mover of the generator is a constant speed turbine, which is the emulation of a micro/pico hydro turbine. From the results, it is found that a simple delta connected excitation and delta configured reactive power compensation limits voltage regulation within ±6% while maintaining the frequency of ±1%, which make feasible of the operation successfully in remote electrification systems.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2173
Author(s):  
Álvaro Rodríguez del Nozal ◽  
Esther Romero-Ramos ◽  
Ángel Luis Trigo-García

Voltage control in active distribution networks must adapt to the unbalanced nature of most of these systems, and this requirement becomes even more apparent at low voltage levels. The use of transformers with on-load tap changers is gaining popularity, and those that allow different tap positions for each of the three phases of the transformer are the most promising. This work tackles the exact approach to the voltage optimization problem of active low-voltage networks when transformers with on-load tap changers are available. A very rigorous approach to the electrical model of all the involved components is used, and common approaches proposed in the literature are avoided. The main aim of the paper is twofold: to demonstrate the importance of being very rigorous in the electrical modeling of all the components to operate in a secure and effective way and to show the greater effectiveness of the decoupled on-load tap changer over the usual on-load tap changer in the voltage regulation problem. A low-voltage benchmark network under different load and distributed generation scenarios is tested with the proposed exact optimal solution to demonstrate its feasibility.


Author(s):  
Allie E. Auld ◽  
Jack Brouwer ◽  
Scott Samuelsen ◽  
Keyue M. Smedley

The challenges associated with incorporating a large amount of distributed generation (DG), including fuel cells, into a radial distribution feeder are examined using a Matlab/Simulink™ model. Two generic distribution feeder models are used to investigate possible scenarios where voltage problems may occur. Modern inverter topologies make ancillary features, such as on-demand reactive power generation/consumption economical to include, which expands the design space across which DG can function in the distribution system. The simulation platform enables testing of the following local control goals: DG connected with unity power factor, DG and load connected with unity power factor, DG connected with local voltage regulation (LVR), and DG connected with real power curtailment. Both the LVR and curtailment strategies can regulate the voltage of the simplest circuit case, but the circuit utilizing a substation with load drop compensation has no universal solution. Even DG with a penetration level around 10% of rated circuit power can cause overvoltage problems with load drop compensation. This implies that some degree of communication will be needed to reliably install a large amount of DG on a distribution circuit.


Sign in / Sign up

Export Citation Format

Share Document