scholarly journals Peer Review #1 of "Semantic representation of scientific literature: bringing claims, contributions and named entities onto the Linked Open Data cloud (v0.1)"

Author(s):  
MA Sultan
2015 ◽  
Vol 1 ◽  
pp. e37 ◽  
Author(s):  
Bahar Sateli ◽  
René Witte

Motivation.Finding relevant scientific literature is one of the essential tasks researchers are facing on a daily basis. Digital libraries and web information retrieval techniques provide rapid access to a vast amount of scientific literature. However, no further automated support is available that would enable fine-grained access to the knowledge ‘stored’ in these documents. The emerging domain ofSemantic Publishingaims at making scientific knowledge accessible to both humans and machines, by adding semantic annotations to content, such as a publication’s contributions, methods, or application domains. However, despite the promises of better knowledge access, the manual annotation of existing research literature is prohibitively expensive for wide-spread adoption. We argue that a novel combination of three distinct methods can significantly advance this vision in a fully-automated way: (i) Natural Language Processing (NLP) forRhetorical Entity(RE) detection; (ii)Named Entity(NE) recognition based on the Linked Open Data (LOD) cloud; and (iii) automatic knowledge base construction for both NEs and REs using semantic web ontologies that interconnect entities in documents with the machine-readable LOD cloud.Results.We present a complete workflow to transform scientific literature into a semantic knowledge base, based on the W3C standards RDF and RDFS. A text mining pipeline, implemented based on the GATE framework, automatically extracts rhetorical entities of typeClaimsandContributionsfrom full-text scientific literature. These REs are further enriched with named entities, represented as URIs to the linked open data cloud, by integrating the DBpedia Spotlight tool into our workflow. Text mining results are stored in a knowledge base through a flexible export process that provides for a dynamic mapping of semantic annotations to LOD vocabularies through rules stored in the knowledge base. We created a gold standard corpus from computer science conference proceedings and journal articles, whereClaimandContributionsentences are manually annotated with their respective types using LOD URIs. The performance of the RE detection phase is evaluated against this corpus, where it achieves an averageF-measure of 0.73. We further demonstrate a number of semantic queries that show how the generated knowledge base can provide support for numerous use cases in managing scientific literature.Availability.All software presented in this paper is available under open source licenses athttp://www.semanticsoftware.info/semantic-scientific-literature-peerj-2015-supplements. Development releases of individual components are additionally available on our GitHub page athttps://github.com/SemanticSoftwareLab.


2013 ◽  
Vol 4 (1) ◽  
pp. 8 ◽  
Author(s):  
Yasunori Yamamoto ◽  
Atsuko Yamaguchi ◽  
Akinori Yonezawa

Author(s):  
Caio Saraiva Coneglian ◽  
José Eduardo Santarem Segundo

O surgimento de novas tecnologias, tem introduzido meios para a divulgação e a disponibilização das informações mais eficientemente. Uma iniciativa, chamada de Europeana, vem promovendo esta adaptação dos objetos informacionais dentro da Web, e mais especificamente no Linked Data. Desta forma, o presente estudo tem como objetivo apresentar uma discussão acerca da relação entre as Humanidades Digitais e o Linked Open Data, na figura da Europeana. Para tal, utilizamos uma metodologia exploratória e que busca explorar as questões relacionadas ao modelo de dados da Europeana, EDM, por meio do SPARQL. Como resultados, compreendemos as características do EDM, pela utilização do SPARQL. Identificamos, ainda, a importância que o conceito de Humanidades Digitais possui dentro do contexto da Europeana.Palavras-chave: Web semântica. Linked open data. Humanidades digitais. Europeana. EDM.Link: https://periodicos.ufsc.br/index.php/eb/article/view/1518-2924.2017v22n48p88/33031


2021 ◽  
Vol 11 (5) ◽  
pp. 2405
Author(s):  
Yuxiang Sun ◽  
Tianyi Zhao ◽  
Seulgi Yoon ◽  
Yongju Lee

Semantic Web has recently gained traction with the use of Linked Open Data (LOD) on the Web. Although numerous state-of-the-art methodologies, standards, and technologies are applicable to the LOD cloud, many issues persist. Because the LOD cloud is based on graph-based resource description framework (RDF) triples and the SPARQL query language, we cannot directly adopt traditional techniques employed for database management systems or distributed computing systems. This paper addresses how the LOD cloud can be efficiently organized, retrieved, and evaluated. We propose a novel hybrid approach that combines the index and live exploration approaches for improved LOD join query performance. Using a two-step index structure combining a disk-based 3D R*-tree with the extended multidimensional histogram and flash memory-based k-d trees, we can efficiently discover interlinked data distributed across multiple resources. Because this method rapidly prunes numerous false hits, the performance of join query processing is remarkably improved. We also propose a hot-cold segment identification algorithm to identify regions of high interest. The proposed method is compared with existing popular methods on real RDF datasets. Results indicate that our method outperforms the existing methods because it can quickly obtain target results by reducing unnecessary data scanning and reduce the amount of main memory required to load filtering results.


Sign in / Sign up

Export Citation Format

Share Document