scholarly journals Peer Review #1 of "SubVis: an interactive R package for exploring the effects of multiple substitution matrices on pairwise sequence alignment (v0.2)"

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3492 ◽  
Author(s):  
Scott Barlowe ◽  
Heather B. Coan ◽  
Robert T. Youker

Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment information.


2020 ◽  
Author(s):  
Daniel Lakens ◽  
Lisa Marie DeBruine

Making scientific information machine-readable greatly facilitates its re-use. Many scientific articles have the goal to test a hypothesis, so making the tests of statistical predictions easier to find and access could be very beneficial. We propose an approach that can be used to make hypothesis tests machine readable. We believe there are two benefits to specifying a hypothesis test in a way that a computer can evaluate whether the statistical prediction is corroborated or not. First, hypothesis test will become more transparent, falsifiable, and rigorous. Second, scientists will benefit if information related to hypothesis tests in scientific articles is easily findable and re-usable, for example when performing meta-analyses, during peer review, and when examining meta-scientific research questions. We examine what a machine readable hypothesis test should look like, and demonstrate the feasibility of machine readable hypothesis tests in a real-life example using the fully operational prototype R package scienceverse.


Sign in / Sign up

Export Citation Format

Share Document