integrative analysis
Recently Published Documents


TOTAL DOCUMENTS

1581
(FIVE YEARS 642)

H-INDEX

69
(FIVE YEARS 11)

2022 ◽  
Vol 177 ◽  
pp. 114491
Author(s):  
Ming Luo ◽  
Aixin Li ◽  
Feiqi Wang ◽  
Junfeng Jiang ◽  
Zhengbiao Wang ◽  
...  

2023 ◽  
Vol 83 ◽  
Author(s):  
N. C. Ghisi ◽  
V. B. Silva ◽  
A. A. Roque ◽  
E. C. Oliveira

Abstract For many centuries human populations have been suffering and trying to fight with disease-bearing mosquitoes. Emerging and reemerging diseases such as Dengue, Zika, and Chikungunya affect billions of people around the world and recently has been appealing to control with chemical pesticides. Malathion (MT) is one of the main pesticides used against mosquitoes, the vectors of these diseases. This study aimed to assess cytotoxicity and mutagenicity of the malathion for the bioindicator Allium cepa L. using a multivariate and integrative approach. Moreover, an appendix table was compiled with all available literature of insecticides assessed by the Allium cepa system to support our discussion. Exposures during 48h to 0.5 mg mL-1 and 1.0 mg mL-1 MT were compared to the negative control (distilled water) and positive control (MMS solution at 10 mg L-1). The presence of chromosomal aberrations, micronuclei frequency, and mitotic index abnormalities was evaluated. Anaphase bridges were the alterations with higher incidence and presented a significantly elevated rate in the concentration of 0.5 mg mL-1, including when compared to the positive control. The integrative discriminant analysis summarizes that MT in assessed concentrations presented effects like the positive control, corroborating its potential of toxicity to DNA. Therefore, it is concluded that MT in its pure composition and in realistic concentrations used, has genotoxic potential in the biological assessment of A. cepa cells. The multivariate integrative analysis was fundamental to show a whole response of all data, providing a global view of the effect of MT on DNA.


2022 ◽  
Vol 293 ◽  
pp. 110664
Author(s):  
Lulu Li ◽  
Tangchun Zheng ◽  
Ping Li ◽  
Weichao Liu ◽  
Like Qiu ◽  
...  

2022 ◽  
Author(s):  
Vipavee Niemsiri ◽  
Sarah Brin Rosenthal ◽  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Maria C. Marchetto ◽  
...  

Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric=1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Minghui Jin ◽  
Yinxue Shan ◽  
Yan Peng ◽  
Ping Wang ◽  
Qi Li ◽  
...  

The insecticidal Vip3 proteins, secreted by Bacillus thuringiensis (Bt) during its vegetative growth phase, are currently used in Bt crops to control insect pests, and are genetically distinct from known insecticidal Cry proteins. Compared with Cry toxins, the mechanisms of Vip3 toxins are still poorly understood. Here, the responses of Spodoptera frugiperda larvae after Vip3Aa challenge are characterized. Using an integrative analysis of transcriptomics and proteomics, we found that Vip3Aa has enormous implications for various pathways. The downregulated genes and proteins were mainly enriched in metabolic pathways, including the insect hormone synthesis pathway, whereas the upregulated genes and proteins were mainly involved in the caspase-mediated apoptosis pathway, along with the MAPK signaling and endocytosis pathways. Moreover, we also identified some important candidate genes involved in apoptosis and MAPKs. The present study shows that exposure of S. frugiperda larvae to Vip3Aa activates apoptosis pathways, leading to cell death. The results will promote our understanding of the host response process to the Vip3Aa, and help us to better understand the mode of action of Vip3A toxins.


Bioengineered ◽  
2022 ◽  
Vol 13 (2) ◽  
pp. 2044-2057
Author(s):  
Zichao Li ◽  
Shun Wang ◽  
Shaojie Liu ◽  
Ziwen Xu ◽  
Xiaowei Yi ◽  
...  

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Charles E. Breeze ◽  
Eric Haugen ◽  
Alex Reynolds ◽  
Andrew Teschendorff ◽  
Jenny van Dongen ◽  
...  

Abstract Background Genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) are known to preferentially co-locate to active regulatory elements in tissues and cell types relevant to disease aetiology. Further characterisation of associated cell type-specific regulation can broaden our understanding of how GWAS signals may contribute to disease risk. Results To gain insight into potential functional mechanisms underlying GWAS associations, we developed FORGE2 (https://forge2.altiusinstitute.org/), which is an updated version of the FORGE web tool. FORGE2 uses an expanded atlas of cell type-specific regulatory element annotations, including DNase I hotspots, five histone mark categories and 15 hidden Markov model (HMM) chromatin states, to identify tissue- and cell type-specific signals. An analysis of 3,604 GWAS from the NHGRI-EBI GWAS catalogue yielded at least one significant disease/trait-tissue association for 2,057 GWAS, including > 400 associations specific to epigenomic marks in immune tissues and cell types, > 30 associations specific to heart tissue, and > 60 associations specific to brain tissue, highlighting the key potential of tissue- and cell type-specific regulatory elements. Importantly, we demonstrate that FORGE2 analysis can separate previously observed accessible chromatin enrichments into different chromatin states, such as enhancers or active transcription start sites, providing a greater understanding of underlying regulatory mechanisms. Interestingly, tissue-specific enrichments for repressive chromatin states and histone marks were also detected, suggesting a role for tissue-specific repressed regions in GWAS-mediated disease aetiology. Conclusion In summary, we demonstrate that FORGE2 has the potential to uncover previously unreported disease-tissue associations and identify new candidate mechanisms. FORGE2 is a transparent, user-friendly web tool for the integrative analysis of loci discovered from GWAS.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shunuo Zhang ◽  
Yixin Zhang ◽  
Peiru Min

Hypertrophic scar (HS) is a common skin disorder characterized by excessive extracellular matrix (ECM) deposition. However, it is still unclear how the cellular composition, cell-cell communications, and crucial transcriptionally regulatory network were changed in HS. In the present study, we found that FB-1, which was identified a major type of fibroblast and had the characteristics of myofibroblast, was significantly expanded in HS by integrative analysis of the single-cell and bulk RNA sequencing (RNA-seq) data. Moreover, the proportion of KC-2, which might be a differentiated type of keratinocyte (KC), was reduced in HS. To decipher the intercellular signaling, we conducted the cell-cell communication analysis between the cell types, and found the autocrine signaling of HB-1 through COL1A1/2-CD44 and CD99-CD99 and the intercellular contacts between FB-1/FB-5 and KC-2 through COL1A1/COL1A2/COL6A1/COL6A2-SDC4. Almost all the ligands and receptors involved in the autocrine signaling of HB-1 were upregulated in HS by both scRNA-seq and bulk RNA-seq data. In contrast, the receptor of KC-2, SDC4, which could bind to multiple ligands, was downregulated in HS, suggesting that the reduced proportion of KC-2 and apoptotic phenotype of KC-2 might be associated with the downregulation of SDC4. Furthermore, we also investigated the transcriptionally regulatory network involved in HS formation. The integrative analysis of the scRNA-seq and bulk RNA-seq data identified CREB3L1 and TWIST2 as the critical TFs involved in the myofibroblast of HS. In summary, the integrative analysis of the single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data greatly improved our understanding of the biological characteristics during the HS formation.


2022 ◽  
pp. 110948
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Zhengjin Huang ◽  
Lianfei Lyu ◽  
Weilin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document