scholarly journals Collaboro: A collaborative (Meta) modeling tool

Author(s):  
Javier Luis Cánovas Izquierdo ◽  
Jordi Cabot

Software development processes are collaborative in nature. Neglecting the key role of end-users leads to software unlikely to satisfy their needs. This collaboration becomes specially important when creating Domain-Specific Modeling Languages (DSMLs), which are (modeling) languages specifically designed to carry out the tasks of a particular domain. While end-users are actually the experts of the domain for which a DSML is developed, their participation in the DSML specification process is still rather limited nowadays. In this paper, we propose a more community-aware language development process by enabling the active participation of all community members (both developers and end-users of the DSML) from the very beginning. Our proposal is based on a DSML itself, called Collaboro, which allows representing change proposals on the DSML design and discussing (and tracing back) possible solutions, comments and decisions arisen during the collaboration. Collaboro also incorporates a metric-based recommender system to help community members to define high-quality notations for the DSMLs. We also show how Collaboro can be used at the model-level to facilitate the collaborative specification of software models.

2016 ◽  
Author(s):  
Javier Luis Cánovas Izquierdo ◽  
Jordi Cabot

Software development processes are collaborative in nature. Neglecting the key role of end-users leads to software unlikely to satisfy their needs. This collaboration becomes specially important when creating Domain-Specific Modeling Languages (DSMLs), which are (modeling) languages specifically designed to carry out the tasks of a particular domain. While end-users are actually the experts of the domain for which a DSML is developed, their participation in the DSML specification process is still rather limited nowadays. In this paper, we propose a more community-aware language development process by enabling the active participation of all community members (both developers and end-users of the DSML) from the very beginning. Our proposal is based on a DSML itself, called Collaboro, which allows representing change proposals on the DSML design and discussing (and tracing back) possible solutions, comments and decisions arisen during the collaboration. Collaboro also incorporates a metric-based recommender system to help community members to define high-quality notations for the DSMLs. We also show how Collaboro can be used at the model-level to facilitate the collaborative specification of software models.


2016 ◽  
Vol 2 ◽  
pp. e84 ◽  
Author(s):  
Javier Luis Cánovas Izquierdo ◽  
Jordi Cabot

Software development is becoming more and more collaborative, emphasizing the role of end-users in the development process to make sure the final product will satisfy customer needs. This is especially relevant when developing Domain-Specific Modeling Languages (DSMLs), which are modeling languages specifically designed to carry out the tasks of a particular domain. While end-users are actually the experts of the domain for which a DSML is developed, their participation in the DSML specification process is still rather limited nowadays. In this paper, we propose a more community-aware language development process by enabling the active participation of all community members (both developers and end-users) from the very beginning. Our proposal, called Collaboro, is based on a DSML itself enabling the representation of change proposals during the language design and the discussion (and trace back) of possible solutions, comments and decisions arisen during the collaboration. Collaboro also incorporates a metric-based recommender system to help community members to define high-quality notations for the DSMLs. We also show how Collaboro can be used at the model-level to facilitate the collaborative specification of software models. Tool support is available both as an Eclipse plug-in a web-based solution.


Author(s):  
Srdjan Zivkovic ◽  
Krzystof Miksa ◽  
Harald Kühn

It has been acknowledged that model-based approaches and domain-specific modeling (DSM) languages, methods and tools are beneficial for the engineering of increasingly complex systems and software. Instead of general-purpose one-size-fits-all modeling languages, DSM methods facilitate model-based analysis and design of complex systems by providing modeling concepts tailored to the specific problem domain. Furthermore, hybrid DSM methods combine single DSM methods into integrated modeling methods, to allow for multi-perspective modeling. Metamodeling platforms provide flexible means for design and implementation of such hybrid modeling methods and appropriate domain-specific modeling tools. In this paper, we report on the conceptualization of a hybrid DSM method in the domain of network physical devices management, and its implementation based on the ADOxx metamodeling platform. The method introduces a hybrid modeling approach. A dedicated DSM language (DSML) is used to model the structure of physical devices and their configurations, whereas the formal language for knowledge representation OWL2 is used to specify configuration-related constraints. The outcome of the work is a hybrid, semantic technology-enabled DSM tool that allows for efficient and consistency-preserving model-based configuration of network equipment.


Sign in / Sign up

Export Citation Format

Share Document